Cargando…
Reinforcement Learning for Radiotherapy Dose Fractioning Automation
External beam radiotherapy cancer treatment aims to deliver dose fractions to slowly destroy a tumor while avoiding severe side effects in surrounding healthy tissues. To automate the dose fraction schedules, this paper investigates how deep reinforcement learning approaches (based on deep Q network...
Autores principales: | Moreau, Grégoire, François-Lavet, Vincent, Desbordes, Paul, Macq, Benoît |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7922060/ https://www.ncbi.nlm.nih.gov/pubmed/33669816 http://dx.doi.org/10.3390/biomedicines9020214 |
Ejemplares similares
-
An introduction to deep reinforcement learning
por: François-Lavet, Vincent, et al.
Publicado: (2018) -
Doses, fractionations, constraints for stereotactic radiotherapy
por: Borghesi, Simona, et al.
Publicado: (2022) -
Radiotherapy and the Tumor Stroma: The Importance of Dose and Fractionation
por: Hellevik, Turid, et al.
Publicado: (2014) -
Automated calibration of somatosensory stimulation using reinforcement learning
por: Borda, Luigi, et al.
Publicado: (2023) -
Automated Intensity Optimisation Using Reinforcement Learning at LEIR
por: Madysa, Nico, et al.
Publicado: (2022)