Cargando…
A-DenseUNet: Adaptive Densely Connected UNet for Polyp Segmentation in Colonoscopy Images with Atrous Convolution
Colon carcinoma is one of the leading causes of cancer-related death in both men and women. Automatic colorectal polyp segmentation and detection in colonoscopy videos help endoscopists to identify colorectal disease more easily, making it a promising method to prevent colon cancer. In this study, w...
Autores principales: | Safarov, Sirojbek, Whangbo, Taeg Keun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7922083/ https://www.ncbi.nlm.nih.gov/pubmed/33669539 http://dx.doi.org/10.3390/s21041441 |
Ejemplares similares
-
DenseUNets with feedback non-local attention for the segmentation of specular microscopy images of the corneal endothelium with guttae
por: Vigueras-Guillén, Juan P., et al.
Publicado: (2022) -
Recognition Rate Advancement and Data Error Improvement of Pathology Cutting with H-DenseUNet for Hepatocellular Carcinoma Image
por: Chen, Wen-Fan, et al.
Publicado: (2021) -
Automatic kidney segmentation using 2.5D ResUNet and 2.5D DenseUNet for malignant potential analysis in complex renal cyst based on CT images
por: Kittipongdaja, Parin, et al.
Publicado: (2022) -
TMD-Unet: Triple-Unet with Multi-Scale Input Features and Dense Skip Connection for Medical Image Segmentation
por: Tran, Song-Toan, et al.
Publicado: (2021) -
PCAT-UNet: UNet-like network fused convolution and transformer for retinal vessel segmentation
por: Chen, Danny, et al.
Publicado: (2022)