Cargando…
Advanced Driving Assistance Based on the Fusion of Infrared and Visible Images
Obtaining key and rich visual information under sophisticated road conditions is one of the key requirements for advanced driving assistance. In this paper, a newfangled end-to-end model is proposed for advanced driving assistance based on the fusion of infrared and visible images, termed as FusionA...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7922155/ https://www.ncbi.nlm.nih.gov/pubmed/33669599 http://dx.doi.org/10.3390/e23020239 |
_version_ | 1783658625017839616 |
---|---|
author | Gu, Yansong Wang, Xinya Zhang, Can Li, Baiyang |
author_facet | Gu, Yansong Wang, Xinya Zhang, Can Li, Baiyang |
author_sort | Gu, Yansong |
collection | PubMed |
description | Obtaining key and rich visual information under sophisticated road conditions is one of the key requirements for advanced driving assistance. In this paper, a newfangled end-to-end model is proposed for advanced driving assistance based on the fusion of infrared and visible images, termed as FusionADA. In our model, we are committed to extracting and fusing the optimal texture details and salient thermal targets from the source images. To achieve this goal, our model constitutes an adversarial framework between the generator and the discriminator. Specifically, the generator aims to generate a fused image with basic intensity information together with the optimal texture details from source images, while the discriminator aims to force the fused image to restore the salient thermal targets from the source infrared image. In addition, our FusionADA is a fully end-to-end model, solving the issues of manually designing complicated activity level measurements and fusion rules existing in traditional methods. Qualitative and quantitative experiments on publicly available datasets RoadScene and TNO demonstrate the superiority of our FusionADA over the state-of-the-art approaches. |
format | Online Article Text |
id | pubmed-7922155 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-79221552021-03-03 Advanced Driving Assistance Based on the Fusion of Infrared and Visible Images Gu, Yansong Wang, Xinya Zhang, Can Li, Baiyang Entropy (Basel) Article Obtaining key and rich visual information under sophisticated road conditions is one of the key requirements for advanced driving assistance. In this paper, a newfangled end-to-end model is proposed for advanced driving assistance based on the fusion of infrared and visible images, termed as FusionADA. In our model, we are committed to extracting and fusing the optimal texture details and salient thermal targets from the source images. To achieve this goal, our model constitutes an adversarial framework between the generator and the discriminator. Specifically, the generator aims to generate a fused image with basic intensity information together with the optimal texture details from source images, while the discriminator aims to force the fused image to restore the salient thermal targets from the source infrared image. In addition, our FusionADA is a fully end-to-end model, solving the issues of manually designing complicated activity level measurements and fusion rules existing in traditional methods. Qualitative and quantitative experiments on publicly available datasets RoadScene and TNO demonstrate the superiority of our FusionADA over the state-of-the-art approaches. MDPI 2021-02-19 /pmc/articles/PMC7922155/ /pubmed/33669599 http://dx.doi.org/10.3390/e23020239 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Gu, Yansong Wang, Xinya Zhang, Can Li, Baiyang Advanced Driving Assistance Based on the Fusion of Infrared and Visible Images |
title | Advanced Driving Assistance Based on the Fusion of Infrared and Visible Images |
title_full | Advanced Driving Assistance Based on the Fusion of Infrared and Visible Images |
title_fullStr | Advanced Driving Assistance Based on the Fusion of Infrared and Visible Images |
title_full_unstemmed | Advanced Driving Assistance Based on the Fusion of Infrared and Visible Images |
title_short | Advanced Driving Assistance Based on the Fusion of Infrared and Visible Images |
title_sort | advanced driving assistance based on the fusion of infrared and visible images |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7922155/ https://www.ncbi.nlm.nih.gov/pubmed/33669599 http://dx.doi.org/10.3390/e23020239 |
work_keys_str_mv | AT guyansong advanceddrivingassistancebasedonthefusionofinfraredandvisibleimages AT wangxinya advanceddrivingassistancebasedonthefusionofinfraredandvisibleimages AT zhangcan advanceddrivingassistancebasedonthefusionofinfraredandvisibleimages AT libaiyang advanceddrivingassistancebasedonthefusionofinfraredandvisibleimages |