Cargando…

Roles of Phosphate Solubilizing Microorganisms from Managing Soil Phosphorus Deficiency to Mediating Biogeochemical P Cycle

SIMPLE SUMMARY: Phosphate solubilizing microorganisms (PSMs), a large microflora that mediate bioavailable soil P, play a critical role in soil by mineralizing organic P, solubilizing inorganic P minerals, and storing large amounts of P in biomass. Given that the basic soil P forms and orthophosphat...

Descripción completa

Detalles Bibliográficos
Autores principales: Tian, Jiang, Ge, Fei, Zhang, Dayi, Deng, Songqiang, Liu, Xingwang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7922199/
https://www.ncbi.nlm.nih.gov/pubmed/33671192
http://dx.doi.org/10.3390/biology10020158
Descripción
Sumario:SIMPLE SUMMARY: Phosphate solubilizing microorganisms (PSMs), a large microflora that mediate bioavailable soil P, play a critical role in soil by mineralizing organic P, solubilizing inorganic P minerals, and storing large amounts of P in biomass. Given that the basic soil P forms and orthophosphate levels can be mediated by PSMs, we conclude that PSMs also play a critical role in the soil P cycle. The present review summarizes the comprehensive and recent understanding about the roles of PSMs in P geochemical processes. ABSTRACT: Phosphorus (P) is a vital element in biological molecules, and one of the main limiting elements for biomass production as plant-available P represents only a small fraction of total soil P. Increasing global food demand and modern agricultural consumption of P fertilizers could lead to excessive inputs of inorganic P in intensively managed croplands, consequently rising P losses and ongoing eutrophication of surface waters. Despite phosphate solubilizing microorganisms (PSMs) are widely accepted as eco-friendly P fertilizers for increasing agricultural productivity, a comprehensive and deeper understanding of the role of PSMs in P geochemical processes for managing P deficiency has received inadequate attention. In this review, we summarize the basic P forms and their geochemical and biological cycles in soil systems, how PSMs mediate soil P biogeochemical cycles, and the metabolic and enzymatic mechanisms behind these processes. We also highlight the important roles of PSMs in the biogeochemical P cycle and provide perspectives on several environmental issues to prioritize in future PSM applications.