Cargando…

Epigenetic effects of Bisphenol A on granulosa cells of mouse follicles during in vitro culture: An experimental study

BACKGROUND: Bisphenol A (BPA), a synthetic endocrine-disrupting chemical, is a reproductive toxicant. Granulosa cells have significant roles in follicle development, and KIT ligand (KITL) and Anti-Müllerian hormone (AMH) are essential biomolecules produced by them during folliculogenesis. OBJECTIVE:...

Descripción completa

Detalles Bibliográficos
Autores principales: Khaghani, Aylin Jamali, Farrokh, Parisa, Zavareh, Saeed
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Knowledge E 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7922291/
https://www.ncbi.nlm.nih.gov/pubmed/33718757
http://dx.doi.org/10.18502/ijrm.v19i2.8471
_version_ 1783658655173836800
author Khaghani, Aylin Jamali
Farrokh, Parisa
Zavareh, Saeed
author_facet Khaghani, Aylin Jamali
Farrokh, Parisa
Zavareh, Saeed
author_sort Khaghani, Aylin Jamali
collection PubMed
description BACKGROUND: Bisphenol A (BPA), a synthetic endocrine-disrupting chemical, is a reproductive toxicant. Granulosa cells have significant roles in follicle development, and KIT ligand (KITL) and Anti-Müllerian hormone (AMH) are essential biomolecules produced by them during folliculogenesis. OBJECTIVE: Due to the widespread use of BPA and its potential epigenetic effects, this study examined the impact of BPA on promoter methylation of amh and kitl genes in mouse granulosa cells. MATERIALS AND METHODS: Preantral follicles were isolated from ovaries of immature mice and cultured for eight days. Then, follicles were treated with 50 and 100 μM of BPA, and 0.01% (v/v) ethanol for 24 and 72 hr. Growth and degeneration of follicles and antrum formation were analyzed. The granulosa cells were isolated mechanically, and their extracted DNA was treated with sodium bisulfite. The promoter regions of the amh and kitl were analyzed with PCR and sequencing. RESULTS: BPA did not change follicle survival and antrum formation significantly (p = 0.41). However, the culture in the presence of 100 μM BPA had an inhibitory effect on growth. Before BPA treatment, the CpG of the kitl and amh promoters were unmethylated and partially methylated, respectively. While the percent of 5mC in the amh promoter reduced at 100 μM of BPA, it did not alter the kitl promoter methylation. CONCLUSION: BPA at higher concentrations has an inhibitory effect on follicle growth. Moreover, it seems that the epigenetic impact of BPA restricts to the demethylation of CpG sites.
format Online
Article
Text
id pubmed-7922291
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Knowledge E
record_format MEDLINE/PubMed
spelling pubmed-79222912021-03-12 Epigenetic effects of Bisphenol A on granulosa cells of mouse follicles during in vitro culture: An experimental study Khaghani, Aylin Jamali Farrokh, Parisa Zavareh, Saeed Int J Reprod Biomed Original Article BACKGROUND: Bisphenol A (BPA), a synthetic endocrine-disrupting chemical, is a reproductive toxicant. Granulosa cells have significant roles in follicle development, and KIT ligand (KITL) and Anti-Müllerian hormone (AMH) are essential biomolecules produced by them during folliculogenesis. OBJECTIVE: Due to the widespread use of BPA and its potential epigenetic effects, this study examined the impact of BPA on promoter methylation of amh and kitl genes in mouse granulosa cells. MATERIALS AND METHODS: Preantral follicles were isolated from ovaries of immature mice and cultured for eight days. Then, follicles were treated with 50 and 100 μM of BPA, and 0.01% (v/v) ethanol for 24 and 72 hr. Growth and degeneration of follicles and antrum formation were analyzed. The granulosa cells were isolated mechanically, and their extracted DNA was treated with sodium bisulfite. The promoter regions of the amh and kitl were analyzed with PCR and sequencing. RESULTS: BPA did not change follicle survival and antrum formation significantly (p = 0.41). However, the culture in the presence of 100 μM BPA had an inhibitory effect on growth. Before BPA treatment, the CpG of the kitl and amh promoters were unmethylated and partially methylated, respectively. While the percent of 5mC in the amh promoter reduced at 100 μM of BPA, it did not alter the kitl promoter methylation. CONCLUSION: BPA at higher concentrations has an inhibitory effect on follicle growth. Moreover, it seems that the epigenetic impact of BPA restricts to the demethylation of CpG sites. Knowledge E 2021-02-21 /pmc/articles/PMC7922291/ /pubmed/33718757 http://dx.doi.org/10.18502/ijrm.v19i2.8471 Text en Copyright © 2021 Jamali Khaghani et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Original Article
Khaghani, Aylin Jamali
Farrokh, Parisa
Zavareh, Saeed
Epigenetic effects of Bisphenol A on granulosa cells of mouse follicles during in vitro culture: An experimental study
title Epigenetic effects of Bisphenol A on granulosa cells of mouse follicles during in vitro culture: An experimental study
title_full Epigenetic effects of Bisphenol A on granulosa cells of mouse follicles during in vitro culture: An experimental study
title_fullStr Epigenetic effects of Bisphenol A on granulosa cells of mouse follicles during in vitro culture: An experimental study
title_full_unstemmed Epigenetic effects of Bisphenol A on granulosa cells of mouse follicles during in vitro culture: An experimental study
title_short Epigenetic effects of Bisphenol A on granulosa cells of mouse follicles during in vitro culture: An experimental study
title_sort epigenetic effects of bisphenol a on granulosa cells of mouse follicles during in vitro culture: an experimental study
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7922291/
https://www.ncbi.nlm.nih.gov/pubmed/33718757
http://dx.doi.org/10.18502/ijrm.v19i2.8471
work_keys_str_mv AT khaghaniaylinjamali epigeneticeffectsofbisphenolaongranulosacellsofmousefolliclesduringinvitrocultureanexperimentalstudy
AT farrokhparisa epigeneticeffectsofbisphenolaongranulosacellsofmousefolliclesduringinvitrocultureanexperimentalstudy
AT zavarehsaeed epigeneticeffectsofbisphenolaongranulosacellsofmousefolliclesduringinvitrocultureanexperimentalstudy