Cargando…
ECG Enhancement and R-Peak Detection Based on Window Variability
In ECG applications, the correct recognition of R-peaks is extremely important for detecting abnormalities, such as arrhythmia and ventricular hypertrophy. In this work, a novel ECG enhancement and R-peak detection method based on window variability is presented, and abbreviated as SQRS. Firstly, th...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7922324/ https://www.ncbi.nlm.nih.gov/pubmed/33670719 http://dx.doi.org/10.3390/healthcare9020227 |
Sumario: | In ECG applications, the correct recognition of R-peaks is extremely important for detecting abnormalities, such as arrhythmia and ventricular hypertrophy. In this work, a novel ECG enhancement and R-peak detection method based on window variability is presented, and abbreviated as SQRS. Firstly, the ECG signal corrupted by various high or low-frequency noises is denoised by moving-average filtering. Secondly, the window variance transform technique is used to enhance the QRS complex and suppress the other components in the ECG, such as P/T waves and noise. Finally, the signal, converted by window variance transform, is applied to generate the R-peaks candidates, and the decision rules, including amplitude and kurtosis adaptive thresholds, are applied to determine the R-peaks. A special squared window variance transform (SWVT) is proposed to measure the signal variability in a certain time window, and this technique reduces false detection rate caused by the various types of interference presented in ECG signals. For the MIT-BIH arrhythmia database, the sensitivity of R-peak detection can reach 99.6% using the proposed method. |
---|