Cargando…
Combinatorial K-Means Clustering as a Machine Learning Tool Applied to Diabetes Mellitus Type 2
A new original procedure based on k-means clustering is designed to find the most appropriate clinical variables able to efficiently separate into groups similar patients diagnosed with diabetes mellitus type 2 (DMT2) and underlying diseases (arterial hypertonia (AH), ischemic heart disease (CHD), d...
Autores principales: | Nedyalkova, Miroslava, Madurga, Sergio, Simeonov, Vasil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7922378/ https://www.ncbi.nlm.nih.gov/pubmed/33671157 http://dx.doi.org/10.3390/ijerph18041919 |
Ejemplares similares
-
Inhibition Ability of Natural Compounds on Receptor-Binding Domain of SARS-CoV2: An In Silico Approach
por: Nedyalkova, Miroslava, et al.
Publicado: (2021) -
Collection of Partition Coefficients in Hexadecyltrimethylammonium Bromide, Sodium Cholate, and Lithium Perfluorooctanesulfonate Micellar Solutions: Experimental Determination and Computational Predictions
por: Saranjam, Leila, et al.
Publicado: (2023) -
Sequence-Based
Prediction of Plant Allergenic Proteins:
Machine Learning Classification Approach
por: Nedyalkova, Miroslava, et al.
Publicado: (2023) -
Vibrational Analysis of Manganese(II) Oxalates Hydrates:
An In Silico Statistical Approach
por: Barazorda-Ccahuana, Haruna L., et al.
Publicado: (2020) -
Developing an Intelligent Data Analysis Approach for Marine Sediments
por: Nedyalkova, Miroslava, et al.
Publicado: (2022)