Cargando…
Projecting Health Impacts of Future Temperature: A Comparison of Quantile-Mapping Bias-Correction Methods
Health impact assessments of future environmental exposures are routinely conducted to quantify population burdens associated with the changing climate. It is well-recognized that simulations from climate models need to be bias-corrected against observations to estimate future exposures. Quantile ma...
Autores principales: | Qian, Weijia, Chang, Howard H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7922393/ https://www.ncbi.nlm.nih.gov/pubmed/33670819 http://dx.doi.org/10.3390/ijerph18041992 |
Ejemplares similares
-
A Quantile Mapping Bias Correction Method Based on Hydroclimatic Classification of the Guiana Shield
por: Ringard, Justine, et al.
Publicado: (2017) -
Effects of Climate change on temperature and precipitation in the Lake Toba region, Indonesia, based on ERA5-land data with quantile mapping bias correction
por: Irwandi, Hendri, et al.
Publicado: (2023) -
Asymmetric impact of temperature on COVID-19 spread in India: Evidence from quantile-on-quantile regression approach
por: Irfan, Muhammad, et al.
Publicado: (2022) -
Bias and Precision of Continuous Norms Obtained Using Quantile Regression
por: Crompvoets, Elise A. V., et al.
Publicado: (2020) -
A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data
por: Teschendorff, Andrew E., et al.
Publicado: (2013)