Cargando…
Recent Advances in UHMWPE/UHMWPE Nanocomposite/UHMWPE Hybrid Nanocomposite Polymer Coatings for Tribological Applications: A Comprehensive Review
In the recent past, polymer coatings have gained the attention of many researchers due to their low cost, their ability to be coated easily on different substrates, low friction and good anti-corrosion properties. Various polymers such as polytetrafluroethylene (PTFE), polyether ether ketone (PEEK),...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7922479/ https://www.ncbi.nlm.nih.gov/pubmed/33670577 http://dx.doi.org/10.3390/polym13040608 |
_version_ | 1783658699378655232 |
---|---|
author | Abdul Samad, Mohammed |
author_facet | Abdul Samad, Mohammed |
author_sort | Abdul Samad, Mohammed |
collection | PubMed |
description | In the recent past, polymer coatings have gained the attention of many researchers due to their low cost, their ability to be coated easily on different substrates, low friction and good anti-corrosion properties. Various polymers such as polytetrafluroethylene (PTFE), polyether ether ketone (PEEK), polymethylmethacrylate (PMMA), polyurethane (PU), polyamide (PA), epoxy and ultra-high molecular weight polytheylene (UHMWPE) have been used to develop these coatings to modify the surfaces of different components to protect them from wear and corrosion. However, among all these polymers, UHMWPE stands out as a tribologist’s polymer due to its low friction and high wear resistance. These coatings have found their way into applications ranging from microelectro mechanical systems (MEMS) to demanding tribological applications such as bearings and biomedical applications. Despite its excellent tribological properties, UHMWPE suffers from limitations such as low load bearing capacity and low thermal stability. To overcome these challenges researchers have developed various routes such as developing UHMWPE composite and hybrid composite coatings with several types of nano/micro fillers, developing composite films system and developing dual film systems. The present paper is an effort to summarize these various routes adopted by different researchers to improve the tribological performance of UHMWPE coatings. |
format | Online Article Text |
id | pubmed-7922479 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-79224792021-03-03 Recent Advances in UHMWPE/UHMWPE Nanocomposite/UHMWPE Hybrid Nanocomposite Polymer Coatings for Tribological Applications: A Comprehensive Review Abdul Samad, Mohammed Polymers (Basel) Review In the recent past, polymer coatings have gained the attention of many researchers due to their low cost, their ability to be coated easily on different substrates, low friction and good anti-corrosion properties. Various polymers such as polytetrafluroethylene (PTFE), polyether ether ketone (PEEK), polymethylmethacrylate (PMMA), polyurethane (PU), polyamide (PA), epoxy and ultra-high molecular weight polytheylene (UHMWPE) have been used to develop these coatings to modify the surfaces of different components to protect them from wear and corrosion. However, among all these polymers, UHMWPE stands out as a tribologist’s polymer due to its low friction and high wear resistance. These coatings have found their way into applications ranging from microelectro mechanical systems (MEMS) to demanding tribological applications such as bearings and biomedical applications. Despite its excellent tribological properties, UHMWPE suffers from limitations such as low load bearing capacity and low thermal stability. To overcome these challenges researchers have developed various routes such as developing UHMWPE composite and hybrid composite coatings with several types of nano/micro fillers, developing composite films system and developing dual film systems. The present paper is an effort to summarize these various routes adopted by different researchers to improve the tribological performance of UHMWPE coatings. MDPI 2021-02-18 /pmc/articles/PMC7922479/ /pubmed/33670577 http://dx.doi.org/10.3390/polym13040608 Text en © 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Abdul Samad, Mohammed Recent Advances in UHMWPE/UHMWPE Nanocomposite/UHMWPE Hybrid Nanocomposite Polymer Coatings for Tribological Applications: A Comprehensive Review |
title | Recent Advances in UHMWPE/UHMWPE Nanocomposite/UHMWPE Hybrid Nanocomposite Polymer Coatings for Tribological Applications: A Comprehensive Review |
title_full | Recent Advances in UHMWPE/UHMWPE Nanocomposite/UHMWPE Hybrid Nanocomposite Polymer Coatings for Tribological Applications: A Comprehensive Review |
title_fullStr | Recent Advances in UHMWPE/UHMWPE Nanocomposite/UHMWPE Hybrid Nanocomposite Polymer Coatings for Tribological Applications: A Comprehensive Review |
title_full_unstemmed | Recent Advances in UHMWPE/UHMWPE Nanocomposite/UHMWPE Hybrid Nanocomposite Polymer Coatings for Tribological Applications: A Comprehensive Review |
title_short | Recent Advances in UHMWPE/UHMWPE Nanocomposite/UHMWPE Hybrid Nanocomposite Polymer Coatings for Tribological Applications: A Comprehensive Review |
title_sort | recent advances in uhmwpe/uhmwpe nanocomposite/uhmwpe hybrid nanocomposite polymer coatings for tribological applications: a comprehensive review |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7922479/ https://www.ncbi.nlm.nih.gov/pubmed/33670577 http://dx.doi.org/10.3390/polym13040608 |
work_keys_str_mv | AT abdulsamadmohammed recentadvancesinuhmwpeuhmwpenanocompositeuhmwpehybridnanocompositepolymercoatingsfortribologicalapplicationsacomprehensivereview |