Cargando…
Quantitative FDG PET Assessment for Oncology Therapy
SIMPLE SUMMARY: PET enables quantitative assessment of tumour biology in vivo. Accumulation of F-18 fluorodeoxyglucose (FDG) may reflect tumour metabolic activity. Quantitative assessment of FDG uptake can be applied for treatment monitoring. Numerous studies indicated biochemical change assessed by...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7922629/ https://www.ncbi.nlm.nih.gov/pubmed/33669531 http://dx.doi.org/10.3390/cancers13040869 |
Sumario: | SIMPLE SUMMARY: PET enables quantitative assessment of tumour biology in vivo. Accumulation of F-18 fluorodeoxyglucose (FDG) may reflect tumour metabolic activity. Quantitative assessment of FDG uptake can be applied for treatment monitoring. Numerous studies indicated biochemical change assessed by FDG-PET as a more sensitive marker than morphological change. Those with complete metabolic response after therapy may show better prognosis. Assessment of metabolic change may be performed using absolute FDG uptake or metabolic tumour volume. More recently, radiomics approaches have been applied to FDG PET. Texture analysis quantifies intratumoral heterogeneity in a voxel-by-voxel basis. Combined with various machine learning techniques, these new quantitative parameters hold a promise for assessing tissue characterization and predicting treatment effect, and could also be used for future prognosis of various tumours. ABSTRACT: Positron emission tomography (PET) has unique characteristics for quantitative assessment of tumour biology in vivo. Accumulation of F-18 fluorodeoxyglucose (FDG) may reflect tumour characteristics based on its metabolic activity. Quantitative assessment of FDG uptake can often be applied for treatment monitoring after chemotherapy or chemoradiotherapy. Numerous studies indicated biochemical change assessed by FDG PET as a more sensitive marker than morphological change estimated by CT or MRI. In addition, those with complete metabolic response after therapy may show better disease-free survival and overall survival than those with other responses. Assessment of metabolic change may be performed using absolute FDG uptake in the tumour (standardized uptake value: SUV). In addition, volumetric parameters such as metabolic tumour volume (MTV) have been introduced for quantitative assessment of FDG uptake in tumour. More recently, radiomics approaches that focus on image-based precision medicine have been applied to FDG PET, as well as other radiological imaging. Among these, texture analysis extracts intratumoral heterogeneity on a voxel-by-voxel basis. Combined with various machine learning techniques, these new quantitative parameters hold a promise for assessing tissue characterization and predicting treatment effect, and could also be used for future prognosis of various tumours, although multicentre clinical trials are needed before application in clinical settings. |
---|