Cargando…
Recycling Waste Cotton Cloths for the Isolation of Cellulose Nanocrystals: A Sustainable Approach
There is an interest in the sustainable utilization of waste cotton cloths because of their enormous volume of generation and high cellulose content. Waste cotton cloths generated are disposed of in a landfill, which causes environmental pollution and leads to the waste of useful resources. In the p...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7922772/ https://www.ncbi.nlm.nih.gov/pubmed/33669623 http://dx.doi.org/10.3390/polym13040626 |
_version_ | 1783658763077550080 |
---|---|
author | Mohamed, Siti Hajar Hossain, Md. Sohrab Mohamad Kassim, Mohamad Haafiz Ahmad, Mardiana Idayu Omar, Fatehah Mohd Balakrishnan, Venugopal Zulkifli, Muzafar Yahaya, Ahmad Naim Ahmad |
author_facet | Mohamed, Siti Hajar Hossain, Md. Sohrab Mohamad Kassim, Mohamad Haafiz Ahmad, Mardiana Idayu Omar, Fatehah Mohd Balakrishnan, Venugopal Zulkifli, Muzafar Yahaya, Ahmad Naim Ahmad |
author_sort | Mohamed, Siti Hajar |
collection | PubMed |
description | There is an interest in the sustainable utilization of waste cotton cloths because of their enormous volume of generation and high cellulose content. Waste cotton cloths generated are disposed of in a landfill, which causes environmental pollution and leads to the waste of useful resources. In the present study, cellulose nanocrystals (CNCs) were isolated from waste cotton cloths collected from a landfill. The waste cotton cloths collected from the landfill were sterilized and cleaned using supercritical CO(2) (scCO(2)) technology. The cellulose was extracted from scCO(2)-treated waste cotton cloths using alkaline pulping and bleaching processes. Subsequently, the CNCs were isolated using the H(2)SO(4) hydrolysis of cellulose. The isolated CNCs were analyzed to determine the morphological, chemical, thermal, and physical properties with various analytical methods, including attenuated total reflection-Fourier transform-infrared spectroscopy (ATR-FTIR), field-emission scanning electron microscopy (FE-SEM), energy-filtered transmission electron microscopy (EF-TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The results showed that the isolated CNCs had a needle-like structure with a length and diameter of 10–30 and 2–6 nm, respectively, and an aspect ratio of 5–15, respectively. Additionally, the isolated CNCs had a high crystallinity index with a good thermal stability. The findings of the present study revealed the potential of recycling waste cotton cloths to produce a value-added product. |
format | Online Article Text |
id | pubmed-7922772 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-79227722021-03-03 Recycling Waste Cotton Cloths for the Isolation of Cellulose Nanocrystals: A Sustainable Approach Mohamed, Siti Hajar Hossain, Md. Sohrab Mohamad Kassim, Mohamad Haafiz Ahmad, Mardiana Idayu Omar, Fatehah Mohd Balakrishnan, Venugopal Zulkifli, Muzafar Yahaya, Ahmad Naim Ahmad Polymers (Basel) Article There is an interest in the sustainable utilization of waste cotton cloths because of their enormous volume of generation and high cellulose content. Waste cotton cloths generated are disposed of in a landfill, which causes environmental pollution and leads to the waste of useful resources. In the present study, cellulose nanocrystals (CNCs) were isolated from waste cotton cloths collected from a landfill. The waste cotton cloths collected from the landfill were sterilized and cleaned using supercritical CO(2) (scCO(2)) technology. The cellulose was extracted from scCO(2)-treated waste cotton cloths using alkaline pulping and bleaching processes. Subsequently, the CNCs were isolated using the H(2)SO(4) hydrolysis of cellulose. The isolated CNCs were analyzed to determine the morphological, chemical, thermal, and physical properties with various analytical methods, including attenuated total reflection-Fourier transform-infrared spectroscopy (ATR-FTIR), field-emission scanning electron microscopy (FE-SEM), energy-filtered transmission electron microscopy (EF-TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The results showed that the isolated CNCs had a needle-like structure with a length and diameter of 10–30 and 2–6 nm, respectively, and an aspect ratio of 5–15, respectively. Additionally, the isolated CNCs had a high crystallinity index with a good thermal stability. The findings of the present study revealed the potential of recycling waste cotton cloths to produce a value-added product. MDPI 2021-02-19 /pmc/articles/PMC7922772/ /pubmed/33669623 http://dx.doi.org/10.3390/polym13040626 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Mohamed, Siti Hajar Hossain, Md. Sohrab Mohamad Kassim, Mohamad Haafiz Ahmad, Mardiana Idayu Omar, Fatehah Mohd Balakrishnan, Venugopal Zulkifli, Muzafar Yahaya, Ahmad Naim Ahmad Recycling Waste Cotton Cloths for the Isolation of Cellulose Nanocrystals: A Sustainable Approach |
title | Recycling Waste Cotton Cloths for the Isolation of Cellulose Nanocrystals: A Sustainable Approach |
title_full | Recycling Waste Cotton Cloths for the Isolation of Cellulose Nanocrystals: A Sustainable Approach |
title_fullStr | Recycling Waste Cotton Cloths for the Isolation of Cellulose Nanocrystals: A Sustainable Approach |
title_full_unstemmed | Recycling Waste Cotton Cloths for the Isolation of Cellulose Nanocrystals: A Sustainable Approach |
title_short | Recycling Waste Cotton Cloths for the Isolation of Cellulose Nanocrystals: A Sustainable Approach |
title_sort | recycling waste cotton cloths for the isolation of cellulose nanocrystals: a sustainable approach |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7922772/ https://www.ncbi.nlm.nih.gov/pubmed/33669623 http://dx.doi.org/10.3390/polym13040626 |
work_keys_str_mv | AT mohamedsitihajar recyclingwastecottonclothsfortheisolationofcellulosenanocrystalsasustainableapproach AT hossainmdsohrab recyclingwastecottonclothsfortheisolationofcellulosenanocrystalsasustainableapproach AT mohamadkassimmohamadhaafiz recyclingwastecottonclothsfortheisolationofcellulosenanocrystalsasustainableapproach AT ahmadmardianaidayu recyclingwastecottonclothsfortheisolationofcellulosenanocrystalsasustainableapproach AT omarfatehahmohd recyclingwastecottonclothsfortheisolationofcellulosenanocrystalsasustainableapproach AT balakrishnanvenugopal recyclingwastecottonclothsfortheisolationofcellulosenanocrystalsasustainableapproach AT zulkiflimuzafar recyclingwastecottonclothsfortheisolationofcellulosenanocrystalsasustainableapproach AT yahayaahmadnaimahmad recyclingwastecottonclothsfortheisolationofcellulosenanocrystalsasustainableapproach |