Cargando…
Underwater Acoustic Target Recognition Based on Depthwise Separable Convolution Neural Networks
Facing the complex marine environment, it is extremely challenging to conduct underwater acoustic target feature extraction and recognition using ship-radiated noise. In this paper, firstly, taking the one-dimensional time-domain raw signal of the ship as the input of the model, a new deep neural ne...
Autores principales: | Hu, Gang, Wang, Kejun, Liu, Liangliang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7922821/ https://www.ncbi.nlm.nih.gov/pubmed/33670677 http://dx.doi.org/10.3390/s21041429 |
Ejemplares similares
-
Facial expression recognition based on improved depthwise separable convolutional network
por: Huo, Hua, et al.
Publicado: (2022) -
FPGA Implementation for Odor Identification with Depthwise Separable Convolutional Neural Network
por: Mo, Zhuofeng, et al.
Publicado: (2021) -
Recognition of Crop Diseases Based on Depthwise Separable Convolution in Edge Computing
por: Gu, Musong, et al.
Publicado: (2020) -
WMR-DepthwiseNet: A Wavelet Multi-Resolution Depthwise Separable Convolutional Neural Network for COVID-19 Diagnosis
por: Monday, Happy Nkanta, et al.
Publicado: (2022) -
A Deep Convolutional Neural Network Inspired by Auditory Perception for Underwater Acoustic Target Recognition
por: Yang, Honghui, et al.
Publicado: (2019)