Cargando…
Smart Electrospun Hybrid Nanofibers Functionalized with Ligand-Free Titanium Nitride (TiN) Nanoparticles for Tissue Engineering
Herein, we report the fabrication and characterization of novel polycaprolactone (PCL)-based nanofibers functionalized with bare (ligand-free) titanium nitride (TiN) nanoparticles (NPs) for tissue engineering applications. Nanofibers were prepared by a newly developed protocol based on the electrosp...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7922954/ https://www.ncbi.nlm.nih.gov/pubmed/33670727 http://dx.doi.org/10.3390/nano11020519 |
_version_ | 1783658805098184704 |
---|---|
author | Nirwan, Viraj P. Filova, Eva Al-Kattan, Ahmed Kabashin, Andrei V. Fahmi, Amir |
author_facet | Nirwan, Viraj P. Filova, Eva Al-Kattan, Ahmed Kabashin, Andrei V. Fahmi, Amir |
author_sort | Nirwan, Viraj P. |
collection | PubMed |
description | Herein, we report the fabrication and characterization of novel polycaprolactone (PCL)-based nanofibers functionalized with bare (ligand-free) titanium nitride (TiN) nanoparticles (NPs) for tissue engineering applications. Nanofibers were prepared by a newly developed protocol based on the electrospinning of PCL solutions together with TiN NPs synthesized by femtosecond laser ablation in acetone. The generated hybrid nanofibers were characterised using spectroscopy, microscopy, and thermal analysis techniques. As shown by scanning electron microscopy measurements, the fabricated electrospun nanofibers had uniform morphology, while their diameter varied between 0.403 ± 0.230 µm and 1.1 ± 0.15 µm by optimising electrospinning solutions and parameters. Thermal analysis measurements demonstrated that the inclusion of TiN NPs in nanofibers led to slight variation in mass degradation initiation and phase change behaviour (T(m)). In vitro viability tests using the incubation of 3T3 fibroblast cells in a nanofiber-based matrix did not reveal any adverse effects, confirming the biocompatibility of hybrid nanofiber structures. The generated hybrid nanofibers functionalized with plasmonic TiN NPs are promising for the development of smart scaffold for tissue engineering platforms and open up new avenues for theranostic applications. |
format | Online Article Text |
id | pubmed-7922954 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-79229542021-03-03 Smart Electrospun Hybrid Nanofibers Functionalized with Ligand-Free Titanium Nitride (TiN) Nanoparticles for Tissue Engineering Nirwan, Viraj P. Filova, Eva Al-Kattan, Ahmed Kabashin, Andrei V. Fahmi, Amir Nanomaterials (Basel) Article Herein, we report the fabrication and characterization of novel polycaprolactone (PCL)-based nanofibers functionalized with bare (ligand-free) titanium nitride (TiN) nanoparticles (NPs) for tissue engineering applications. Nanofibers were prepared by a newly developed protocol based on the electrospinning of PCL solutions together with TiN NPs synthesized by femtosecond laser ablation in acetone. The generated hybrid nanofibers were characterised using spectroscopy, microscopy, and thermal analysis techniques. As shown by scanning electron microscopy measurements, the fabricated electrospun nanofibers had uniform morphology, while their diameter varied between 0.403 ± 0.230 µm and 1.1 ± 0.15 µm by optimising electrospinning solutions and parameters. Thermal analysis measurements demonstrated that the inclusion of TiN NPs in nanofibers led to slight variation in mass degradation initiation and phase change behaviour (T(m)). In vitro viability tests using the incubation of 3T3 fibroblast cells in a nanofiber-based matrix did not reveal any adverse effects, confirming the biocompatibility of hybrid nanofiber structures. The generated hybrid nanofibers functionalized with plasmonic TiN NPs are promising for the development of smart scaffold for tissue engineering platforms and open up new avenues for theranostic applications. MDPI 2021-02-18 /pmc/articles/PMC7922954/ /pubmed/33670727 http://dx.doi.org/10.3390/nano11020519 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Nirwan, Viraj P. Filova, Eva Al-Kattan, Ahmed Kabashin, Andrei V. Fahmi, Amir Smart Electrospun Hybrid Nanofibers Functionalized with Ligand-Free Titanium Nitride (TiN) Nanoparticles for Tissue Engineering |
title | Smart Electrospun Hybrid Nanofibers Functionalized with Ligand-Free Titanium Nitride (TiN) Nanoparticles for Tissue Engineering |
title_full | Smart Electrospun Hybrid Nanofibers Functionalized with Ligand-Free Titanium Nitride (TiN) Nanoparticles for Tissue Engineering |
title_fullStr | Smart Electrospun Hybrid Nanofibers Functionalized with Ligand-Free Titanium Nitride (TiN) Nanoparticles for Tissue Engineering |
title_full_unstemmed | Smart Electrospun Hybrid Nanofibers Functionalized with Ligand-Free Titanium Nitride (TiN) Nanoparticles for Tissue Engineering |
title_short | Smart Electrospun Hybrid Nanofibers Functionalized with Ligand-Free Titanium Nitride (TiN) Nanoparticles for Tissue Engineering |
title_sort | smart electrospun hybrid nanofibers functionalized with ligand-free titanium nitride (tin) nanoparticles for tissue engineering |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7922954/ https://www.ncbi.nlm.nih.gov/pubmed/33670727 http://dx.doi.org/10.3390/nano11020519 |
work_keys_str_mv | AT nirwanvirajp smartelectrospunhybridnanofibersfunctionalizedwithligandfreetitaniumnitridetinnanoparticlesfortissueengineering AT filovaeva smartelectrospunhybridnanofibersfunctionalizedwithligandfreetitaniumnitridetinnanoparticlesfortissueengineering AT alkattanahmed smartelectrospunhybridnanofibersfunctionalizedwithligandfreetitaniumnitridetinnanoparticlesfortissueengineering AT kabashinandreiv smartelectrospunhybridnanofibersfunctionalizedwithligandfreetitaniumnitridetinnanoparticlesfortissueengineering AT fahmiamir smartelectrospunhybridnanofibersfunctionalizedwithligandfreetitaniumnitridetinnanoparticlesfortissueengineering |