Cargando…
Three State Estimation Fusion Methods Based on the Characteristic Function Filtering
There are three state estimation fusion methods for a class of strong nonlinear measurement systems, based on the characteristic function filter, namely the centralized filter, parallel filter, and sequential filter. Under ideal communication conditions, the centralized filter can obtain the best st...
Autores principales: | Yuan, Yiran, Wen, Chenglin, Qiu, Yiting, Sun, Xiaohui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7922971/ https://www.ncbi.nlm.nih.gov/pubmed/33669528 http://dx.doi.org/10.3390/s21041440 |
Ejemplares similares
-
A High-Order Kalman Filter Method for Fusion Estimation of Motion Trajectories of Multi-Robot Formation
por: Wang, Miao, et al.
Publicado: (2022) -
Design of a High-Order Kalman Filter for State and Measurement of A Class of Nonlinear Systems Based on Kronecker Product Augmented Dimension
por: Peng, Deyan, et al.
Publicado: (2023) -
Estimation of the Path-Loss Exponent by Bayesian Filtering Method
por: Wojcicki, Piotr, et al.
Publicado: (2021) -
Design Method of High-Order Kalman Filter for Strong Nonlinear System Based on Kronecker Product Transform
por: Liu, Xiaohan, et al.
Publicado: (2022) -
A Novel Data Sampling Driven Kalman Filter Is Designed by Combining the Characteristic Sampling of UKF and the Random Sampling of EnKF
por: Cui, Tipo, et al.
Publicado: (2022)