Cargando…

Climate control on terrestrial biospheric carbon turnover

Terrestrial vegetation and soils hold three times more carbon than the atmosphere. Much debate concerns how anthropogenic activity will perturb these surface reservoirs, potentially exacerbating ongoing changes to the climate system. Uncertainties specifically persist in extrapolating point-source o...

Descripción completa

Detalles Bibliográficos
Autores principales: Eglinton, Timothy I., Galy, Valier V., Hemingway, Jordon D., Feng, Xiaojuan, Bao, Hongyan, Blattmann, Thomas M., Dickens, Angela F., Gies, Hannah, Giosan, Liviu, Haghipour, Negar, Hou, Pengfei, Lupker, Maarten, McIntyre, Cameron P., Montluçon, Daniel B., Peucker-Ehrenbrink, Bernhard, Ponton, Camilo, Schefuß, Enno, Schwab, Melissa S., Voss, Britta M., Wacker, Lukas, Wu, Ying, Zhao, Meixun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7923348/
https://www.ncbi.nlm.nih.gov/pubmed/33593902
http://dx.doi.org/10.1073/pnas.2011585118
_version_ 1783658890133504000
author Eglinton, Timothy I.
Galy, Valier V.
Hemingway, Jordon D.
Feng, Xiaojuan
Bao, Hongyan
Blattmann, Thomas M.
Dickens, Angela F.
Gies, Hannah
Giosan, Liviu
Haghipour, Negar
Hou, Pengfei
Lupker, Maarten
McIntyre, Cameron P.
Montluçon, Daniel B.
Peucker-Ehrenbrink, Bernhard
Ponton, Camilo
Schefuß, Enno
Schwab, Melissa S.
Voss, Britta M.
Wacker, Lukas
Wu, Ying
Zhao, Meixun
author_facet Eglinton, Timothy I.
Galy, Valier V.
Hemingway, Jordon D.
Feng, Xiaojuan
Bao, Hongyan
Blattmann, Thomas M.
Dickens, Angela F.
Gies, Hannah
Giosan, Liviu
Haghipour, Negar
Hou, Pengfei
Lupker, Maarten
McIntyre, Cameron P.
Montluçon, Daniel B.
Peucker-Ehrenbrink, Bernhard
Ponton, Camilo
Schefuß, Enno
Schwab, Melissa S.
Voss, Britta M.
Wacker, Lukas
Wu, Ying
Zhao, Meixun
author_sort Eglinton, Timothy I.
collection PubMed
description Terrestrial vegetation and soils hold three times more carbon than the atmosphere. Much debate concerns how anthropogenic activity will perturb these surface reservoirs, potentially exacerbating ongoing changes to the climate system. Uncertainties specifically persist in extrapolating point-source observations to ecosystem-scale budgets and fluxes, which require consideration of vertical and lateral processes on multiple temporal and spatial scales. To explore controls on organic carbon (OC) turnover at the river basin scale, we present radiocarbon ((14)C) ages on two groups of molecular tracers of plant-derived carbon—leaf-wax lipids and lignin phenols—from a globally distributed suite of rivers. We find significant negative relationships between the (14)C age of these biomarkers and mean annual temperature and precipitation. Moreover, riverine biospheric-carbon ages scale proportionally with basin-wide soil carbon turnover times and soil (14)C ages, implicating OC cycling within soils as a primary control on exported biomarker ages and revealing a broad distribution of soil OC reactivities. The ubiquitous occurrence of a long-lived soil OC pool suggests soil OC is globally vulnerable to perturbations by future temperature and precipitation increase. Scaling of riverine biospheric-carbon ages with soil OC turnover shows the former can constrain the sensitivity of carbon dynamics to environmental controls on broad spatial scales. Extracting this information from fluvially dominated sedimentary sequences may inform past variations in soil OC turnover in response to anthropogenic and/or climate perturbations. In turn, monitoring riverine OC composition may help detect future climate-change–induced perturbations of soil OC turnover and stocks.
format Online
Article
Text
id pubmed-7923348
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-79233482021-03-10 Climate control on terrestrial biospheric carbon turnover Eglinton, Timothy I. Galy, Valier V. Hemingway, Jordon D. Feng, Xiaojuan Bao, Hongyan Blattmann, Thomas M. Dickens, Angela F. Gies, Hannah Giosan, Liviu Haghipour, Negar Hou, Pengfei Lupker, Maarten McIntyre, Cameron P. Montluçon, Daniel B. Peucker-Ehrenbrink, Bernhard Ponton, Camilo Schefuß, Enno Schwab, Melissa S. Voss, Britta M. Wacker, Lukas Wu, Ying Zhao, Meixun Proc Natl Acad Sci U S A Physical Sciences Terrestrial vegetation and soils hold three times more carbon than the atmosphere. Much debate concerns how anthropogenic activity will perturb these surface reservoirs, potentially exacerbating ongoing changes to the climate system. Uncertainties specifically persist in extrapolating point-source observations to ecosystem-scale budgets and fluxes, which require consideration of vertical and lateral processes on multiple temporal and spatial scales. To explore controls on organic carbon (OC) turnover at the river basin scale, we present radiocarbon ((14)C) ages on two groups of molecular tracers of plant-derived carbon—leaf-wax lipids and lignin phenols—from a globally distributed suite of rivers. We find significant negative relationships between the (14)C age of these biomarkers and mean annual temperature and precipitation. Moreover, riverine biospheric-carbon ages scale proportionally with basin-wide soil carbon turnover times and soil (14)C ages, implicating OC cycling within soils as a primary control on exported biomarker ages and revealing a broad distribution of soil OC reactivities. The ubiquitous occurrence of a long-lived soil OC pool suggests soil OC is globally vulnerable to perturbations by future temperature and precipitation increase. Scaling of riverine biospheric-carbon ages with soil OC turnover shows the former can constrain the sensitivity of carbon dynamics to environmental controls on broad spatial scales. Extracting this information from fluvially dominated sedimentary sequences may inform past variations in soil OC turnover in response to anthropogenic and/or climate perturbations. In turn, monitoring riverine OC composition may help detect future climate-change–induced perturbations of soil OC turnover and stocks. National Academy of Sciences 2021-02-23 2021-02-15 /pmc/articles/PMC7923348/ /pubmed/33593902 http://dx.doi.org/10.1073/pnas.2011585118 Text en Copyright © 2021 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/ https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Physical Sciences
Eglinton, Timothy I.
Galy, Valier V.
Hemingway, Jordon D.
Feng, Xiaojuan
Bao, Hongyan
Blattmann, Thomas M.
Dickens, Angela F.
Gies, Hannah
Giosan, Liviu
Haghipour, Negar
Hou, Pengfei
Lupker, Maarten
McIntyre, Cameron P.
Montluçon, Daniel B.
Peucker-Ehrenbrink, Bernhard
Ponton, Camilo
Schefuß, Enno
Schwab, Melissa S.
Voss, Britta M.
Wacker, Lukas
Wu, Ying
Zhao, Meixun
Climate control on terrestrial biospheric carbon turnover
title Climate control on terrestrial biospheric carbon turnover
title_full Climate control on terrestrial biospheric carbon turnover
title_fullStr Climate control on terrestrial biospheric carbon turnover
title_full_unstemmed Climate control on terrestrial biospheric carbon turnover
title_short Climate control on terrestrial biospheric carbon turnover
title_sort climate control on terrestrial biospheric carbon turnover
topic Physical Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7923348/
https://www.ncbi.nlm.nih.gov/pubmed/33593902
http://dx.doi.org/10.1073/pnas.2011585118
work_keys_str_mv AT eglintontimothyi climatecontrolonterrestrialbiosphericcarbonturnover
AT galyvalierv climatecontrolonterrestrialbiosphericcarbonturnover
AT hemingwayjordond climatecontrolonterrestrialbiosphericcarbonturnover
AT fengxiaojuan climatecontrolonterrestrialbiosphericcarbonturnover
AT baohongyan climatecontrolonterrestrialbiosphericcarbonturnover
AT blattmannthomasm climatecontrolonterrestrialbiosphericcarbonturnover
AT dickensangelaf climatecontrolonterrestrialbiosphericcarbonturnover
AT gieshannah climatecontrolonterrestrialbiosphericcarbonturnover
AT giosanliviu climatecontrolonterrestrialbiosphericcarbonturnover
AT haghipournegar climatecontrolonterrestrialbiosphericcarbonturnover
AT houpengfei climatecontrolonterrestrialbiosphericcarbonturnover
AT lupkermaarten climatecontrolonterrestrialbiosphericcarbonturnover
AT mcintyrecameronp climatecontrolonterrestrialbiosphericcarbonturnover
AT montlucondanielb climatecontrolonterrestrialbiosphericcarbonturnover
AT peuckerehrenbrinkbernhard climatecontrolonterrestrialbiosphericcarbonturnover
AT pontoncamilo climatecontrolonterrestrialbiosphericcarbonturnover
AT schefußenno climatecontrolonterrestrialbiosphericcarbonturnover
AT schwabmelissas climatecontrolonterrestrialbiosphericcarbonturnover
AT vossbrittam climatecontrolonterrestrialbiosphericcarbonturnover
AT wackerlukas climatecontrolonterrestrialbiosphericcarbonturnover
AT wuying climatecontrolonterrestrialbiosphericcarbonturnover
AT zhaomeixun climatecontrolonterrestrialbiosphericcarbonturnover