Cargando…
Double Deep Q-Learning and Faster R-CNN-Based Autonomous Vehicle Navigation and Obstacle Avoidance in Dynamic Environment
Autonomous vehicle navigation in an unknown dynamic environment is crucial for both supervised- and Reinforcement Learning-based autonomous maneuvering. The cooperative fusion of these two learning approaches has the potential to be an effective mechanism to tackle indefinite environmental dynamics....
Autores principales: | Bin Issa, Razin, Das, Modhumonty, Rahman, Md. Saferi, Barua, Monika, Rhaman, Md. Khalilur, Ripon, Kazi Shah Nawaz, Alam, Md. Golam Rabiul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7923439/ https://www.ncbi.nlm.nih.gov/pubmed/33672476 http://dx.doi.org/10.3390/s21041468 |
Ejemplares similares
-
CNN-XGBoost fusion-based affective state recognition using EEG spectrogram image analysis
por: Khan, Md. Sakib, et al.
Publicado: (2022) -
Obstacle Detection and Safely Navigate the Autonomous Vehicle from Unexpected Obstacles on the Driving Lane
por: Haris, Malik, et al.
Publicado: (2020) -
Dynamic Obstacle Avoidance for Unmanned Underwater Vehicles Based on an Improved Velocity Obstacle Method
por: Zhang, Wei, et al.
Publicado: (2017) -
Design of Faster R-CNN-Based Fault Detection Method for Subway Vehicles
por: Ma, Hanlin, et al.
Publicado: (2022) -
Engineering Vehicles Detection Based on Modified Faster R-CNN for Power Grid Surveillance
por: Xiang, Xuezhi, et al.
Publicado: (2018)