Cargando…
Strategy for mass production of lytic Staphylococcus aureus bacteriophage pSa-3: contribution of multiplicity of infection and response surface methodology
BACKGROUND: Antibiotic-resistant bacteria have emerged as a serious problem; bacteriophages have, therefore, been proposed as a therapeutic alternative to antibiotics. Several authorities, such as pharmacopeia, FDA, have confirmed their safety, and some bacteriophages are commercially available worl...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7923500/ https://www.ncbi.nlm.nih.gov/pubmed/33653327 http://dx.doi.org/10.1186/s12934-021-01549-8 |
_version_ | 1783658915440885760 |
---|---|
author | Kim, Sang Guen Kwon, Jun Giri, Sib Sankar Yun, Saekil Kim, Hyoun Joong Kim, Sang Wha Kang, Jung Woo Lee, Sung Bin Jung, Won Joon Park, Se Chang |
author_facet | Kim, Sang Guen Kwon, Jun Giri, Sib Sankar Yun, Saekil Kim, Hyoun Joong Kim, Sang Wha Kang, Jung Woo Lee, Sung Bin Jung, Won Joon Park, Se Chang |
author_sort | Kim, Sang Guen |
collection | PubMed |
description | BACKGROUND: Antibiotic-resistant bacteria have emerged as a serious problem; bacteriophages have, therefore, been proposed as a therapeutic alternative to antibiotics. Several authorities, such as pharmacopeia, FDA, have confirmed their safety, and some bacteriophages are commercially available worldwide. The demand for bacteriophages is expected to increase exponentially in the future; hence, there is an urgent need to mass-produce bacteriophages economically. Unlike the replication of non-lytic bacteriophages, lytic bacteriophages are replicated by lysing host bacteria, which leads to the termination of phage production; hence, strategies that can prolong the lysis of host bacteria in bacteria–bacteriophage co-cultures, are required. RESULTS: In the current study, we manipulated the inoculum concentrations of Staphylococcus aureus and phage pSa-3 (multiplicity of infection, MOI), and their energy sources to delay the bactericidal effect while optimizing phage production. We examined an increasing range of bacterial inoculum concentration (2 × 10(8) to 2 × 10(9) CFU/mL) to decrease the lag phase, in combination with a decreasing range of phage inoculum (from MOI 0.01 to 0.00000001) to delay the lysis of the host. Bacterial concentration of 2 × 10(8) CFU/mL and phage MOI of 0.0001 showed the maximum final phage production rate (1.68 × 10(10) plaque forming unit (PFU)/mL). With this combination of phage–bacteria inoculum, we selected glycerol, glycine, and calcium as carbon, nitrogen, and divalent ion sources, respectively, for phage production. After optimization using response surface methodology, the final concentration of the lytic Staphylococcus phage was 8.63 × 10(10) ± 9.71 × 10(9) PFU/mL (5.13-fold increase). CONCLUSIONS: Therefore, Staphylococcus phage pSa-3 production can be maximized by increasing the bacterial inoculum and reducing the seeding phage MOI, and this combinatorial strategy could decrease the phage production time. Further, we suggest that response surface methodology has the potential for optimizing the mass production of lytic bacteriophages. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12934-021-01549-8. |
format | Online Article Text |
id | pubmed-7923500 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-79235002021-03-02 Strategy for mass production of lytic Staphylococcus aureus bacteriophage pSa-3: contribution of multiplicity of infection and response surface methodology Kim, Sang Guen Kwon, Jun Giri, Sib Sankar Yun, Saekil Kim, Hyoun Joong Kim, Sang Wha Kang, Jung Woo Lee, Sung Bin Jung, Won Joon Park, Se Chang Microb Cell Fact Research BACKGROUND: Antibiotic-resistant bacteria have emerged as a serious problem; bacteriophages have, therefore, been proposed as a therapeutic alternative to antibiotics. Several authorities, such as pharmacopeia, FDA, have confirmed their safety, and some bacteriophages are commercially available worldwide. The demand for bacteriophages is expected to increase exponentially in the future; hence, there is an urgent need to mass-produce bacteriophages economically. Unlike the replication of non-lytic bacteriophages, lytic bacteriophages are replicated by lysing host bacteria, which leads to the termination of phage production; hence, strategies that can prolong the lysis of host bacteria in bacteria–bacteriophage co-cultures, are required. RESULTS: In the current study, we manipulated the inoculum concentrations of Staphylococcus aureus and phage pSa-3 (multiplicity of infection, MOI), and their energy sources to delay the bactericidal effect while optimizing phage production. We examined an increasing range of bacterial inoculum concentration (2 × 10(8) to 2 × 10(9) CFU/mL) to decrease the lag phase, in combination with a decreasing range of phage inoculum (from MOI 0.01 to 0.00000001) to delay the lysis of the host. Bacterial concentration of 2 × 10(8) CFU/mL and phage MOI of 0.0001 showed the maximum final phage production rate (1.68 × 10(10) plaque forming unit (PFU)/mL). With this combination of phage–bacteria inoculum, we selected glycerol, glycine, and calcium as carbon, nitrogen, and divalent ion sources, respectively, for phage production. After optimization using response surface methodology, the final concentration of the lytic Staphylococcus phage was 8.63 × 10(10) ± 9.71 × 10(9) PFU/mL (5.13-fold increase). CONCLUSIONS: Therefore, Staphylococcus phage pSa-3 production can be maximized by increasing the bacterial inoculum and reducing the seeding phage MOI, and this combinatorial strategy could decrease the phage production time. Further, we suggest that response surface methodology has the potential for optimizing the mass production of lytic bacteriophages. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12934-021-01549-8. BioMed Central 2021-03-02 /pmc/articles/PMC7923500/ /pubmed/33653327 http://dx.doi.org/10.1186/s12934-021-01549-8 Text en © The Author(s) 2021 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Kim, Sang Guen Kwon, Jun Giri, Sib Sankar Yun, Saekil Kim, Hyoun Joong Kim, Sang Wha Kang, Jung Woo Lee, Sung Bin Jung, Won Joon Park, Se Chang Strategy for mass production of lytic Staphylococcus aureus bacteriophage pSa-3: contribution of multiplicity of infection and response surface methodology |
title | Strategy for mass production of lytic Staphylococcus aureus bacteriophage pSa-3: contribution of multiplicity of infection and response surface methodology |
title_full | Strategy for mass production of lytic Staphylococcus aureus bacteriophage pSa-3: contribution of multiplicity of infection and response surface methodology |
title_fullStr | Strategy for mass production of lytic Staphylococcus aureus bacteriophage pSa-3: contribution of multiplicity of infection and response surface methodology |
title_full_unstemmed | Strategy for mass production of lytic Staphylococcus aureus bacteriophage pSa-3: contribution of multiplicity of infection and response surface methodology |
title_short | Strategy for mass production of lytic Staphylococcus aureus bacteriophage pSa-3: contribution of multiplicity of infection and response surface methodology |
title_sort | strategy for mass production of lytic staphylococcus aureus bacteriophage psa-3: contribution of multiplicity of infection and response surface methodology |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7923500/ https://www.ncbi.nlm.nih.gov/pubmed/33653327 http://dx.doi.org/10.1186/s12934-021-01549-8 |
work_keys_str_mv | AT kimsangguen strategyformassproductionoflyticstaphylococcusaureusbacteriophagepsa3contributionofmultiplicityofinfectionandresponsesurfacemethodology AT kwonjun strategyformassproductionoflyticstaphylococcusaureusbacteriophagepsa3contributionofmultiplicityofinfectionandresponsesurfacemethodology AT girisibsankar strategyformassproductionoflyticstaphylococcusaureusbacteriophagepsa3contributionofmultiplicityofinfectionandresponsesurfacemethodology AT yunsaekil strategyformassproductionoflyticstaphylococcusaureusbacteriophagepsa3contributionofmultiplicityofinfectionandresponsesurfacemethodology AT kimhyounjoong strategyformassproductionoflyticstaphylococcusaureusbacteriophagepsa3contributionofmultiplicityofinfectionandresponsesurfacemethodology AT kimsangwha strategyformassproductionoflyticstaphylococcusaureusbacteriophagepsa3contributionofmultiplicityofinfectionandresponsesurfacemethodology AT kangjungwoo strategyformassproductionoflyticstaphylococcusaureusbacteriophagepsa3contributionofmultiplicityofinfectionandresponsesurfacemethodology AT leesungbin strategyformassproductionoflyticstaphylococcusaureusbacteriophagepsa3contributionofmultiplicityofinfectionandresponsesurfacemethodology AT jungwonjoon strategyformassproductionoflyticstaphylococcusaureusbacteriophagepsa3contributionofmultiplicityofinfectionandresponsesurfacemethodology AT parksechang strategyformassproductionoflyticstaphylococcusaureusbacteriophagepsa3contributionofmultiplicityofinfectionandresponsesurfacemethodology |