Cargando…

Effect of the order of concurrent training combined with resistance and high‐intensity interval exercise on mTOR signaling and glycolytic metabolism in mouse skeletal muscle

Athletes train to improve strength and endurance to demonstrate maximum performance during competitions. Training methods vary but most focus on strength, endurance, or both. Concurrent training is a combination of two different modes of training. In this study, we combined resistance exercise (RE)...

Descripción completa

Detalles Bibliográficos
Autores principales: Shirai, Takanaga, Hanakita, Hideto, Uemichi, Kazuki, Takemasa, Tohru
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7923557/
https://www.ncbi.nlm.nih.gov/pubmed/33650809
http://dx.doi.org/10.14814/phy2.14770
Descripción
Sumario:Athletes train to improve strength and endurance to demonstrate maximum performance during competitions. Training methods vary but most focus on strength, endurance, or both. Concurrent training is a combination of two different modes of training. In this study, we combined resistance exercise (RE) and high‐intensity interval exercise (HIIE) to investigate the influence of the order of the concurrent training on signal molecules on hypertrophy and glycolysis in the skeletal muscle. The phosphorylation levels of mechanistic target of rapamycin (mTOR) signals, p70 S6 kinase (p70S6 K), ribosomal protein S6 (S6), and glycogen synthase kinase beta (GSK‐3β) were significantly increased in the HIIE first group compared with the control group. The combined training course did not affect the glycogen content and expression levels of proteins concerning glycolytic and metabolic capacity, suggesting that a combination of HIIE and RE on the same day, with HIIE prior to RE, improves hypertrophy response and glycolysis enhancement.