Cargando…
Synthesis of ethyl acetate from glucose by Kluyveromyces marxianus, Cyberlindnera jadinii and Wickerhamomyces anomalus depending on the induction mode
Ethyl acetate is currently produced from fossil carbon resources. This ester could also be microbially synthesized from sugar‐rich wastes of the food industry. Wild‐type strains with GRAS status are preferred for such applications. Production of ethyl acetate by wild‐type yeasts has been repeatedly...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7923572/ https://www.ncbi.nlm.nih.gov/pubmed/33716614 http://dx.doi.org/10.1002/elsc.202000048 |
_version_ | 1783658928927670272 |
---|---|
author | Hoffmann, Andreas Kupsch, Christian Walther, Thomas Löser, Christian |
author_facet | Hoffmann, Andreas Kupsch, Christian Walther, Thomas Löser, Christian |
author_sort | Hoffmann, Andreas |
collection | PubMed |
description | Ethyl acetate is currently produced from fossil carbon resources. This ester could also be microbially synthesized from sugar‐rich wastes of the food industry. Wild‐type strains with GRAS status are preferred for such applications. Production of ethyl acetate by wild‐type yeasts has been repeatedly reported, but comparative studies with several strains at various induction modes are largely missing. Here, synthesis of ethyl acetate by three yeasts with GRAS status, Kluyveromyces marxianus DSM 5422, Cyberlindnera jadinii DSM 2361 and Wickerhamomyces anomalus DSM 6766, was studied under identical and well‐defined conditions in an aerated bioreactor, by inducing the ester synthesis via iron or oxygen limitation. Balancing the ester synthesis was based on measured concentrations of ethyl acetate in the exhaust gas, delivering masses of synthesized ester and synthesis rates in a high temporal resolution. All tested yeasts synthesized ethyl acetate under these conditions, but the intensity varied with the strain and induction mode. The highest yields were achieved under iron limitation with K. marxianus (0.182 g g(–1)) and under oxygen limitation with W. anomalus (0.053 g g(–1)). Iron limitation proved to be the better inducer for ester synthesis while oxygen limitation favored ethanol formation. K. marxianus DSM 5422 was the most potent producer of ethyl acetate exhibiting the highest biomass‐specific synthesis rate of 0.5 g g(–1)h(–1) under moderate iron limitation. |
format | Online Article Text |
id | pubmed-7923572 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-79235722021-03-12 Synthesis of ethyl acetate from glucose by Kluyveromyces marxianus, Cyberlindnera jadinii and Wickerhamomyces anomalus depending on the induction mode Hoffmann, Andreas Kupsch, Christian Walther, Thomas Löser, Christian Eng Life Sci Research Articles Ethyl acetate is currently produced from fossil carbon resources. This ester could also be microbially synthesized from sugar‐rich wastes of the food industry. Wild‐type strains with GRAS status are preferred for such applications. Production of ethyl acetate by wild‐type yeasts has been repeatedly reported, but comparative studies with several strains at various induction modes are largely missing. Here, synthesis of ethyl acetate by three yeasts with GRAS status, Kluyveromyces marxianus DSM 5422, Cyberlindnera jadinii DSM 2361 and Wickerhamomyces anomalus DSM 6766, was studied under identical and well‐defined conditions in an aerated bioreactor, by inducing the ester synthesis via iron or oxygen limitation. Balancing the ester synthesis was based on measured concentrations of ethyl acetate in the exhaust gas, delivering masses of synthesized ester and synthesis rates in a high temporal resolution. All tested yeasts synthesized ethyl acetate under these conditions, but the intensity varied with the strain and induction mode. The highest yields were achieved under iron limitation with K. marxianus (0.182 g g(–1)) and under oxygen limitation with W. anomalus (0.053 g g(–1)). Iron limitation proved to be the better inducer for ester synthesis while oxygen limitation favored ethanol formation. K. marxianus DSM 5422 was the most potent producer of ethyl acetate exhibiting the highest biomass‐specific synthesis rate of 0.5 g g(–1)h(–1) under moderate iron limitation. John Wiley and Sons Inc. 2020-12-23 /pmc/articles/PMC7923572/ /pubmed/33716614 http://dx.doi.org/10.1002/elsc.202000048 Text en © 2020 The Authors. Engineering in Life Sciences published by Wiley‐VCH GmbH This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Hoffmann, Andreas Kupsch, Christian Walther, Thomas Löser, Christian Synthesis of ethyl acetate from glucose by Kluyveromyces marxianus, Cyberlindnera jadinii and Wickerhamomyces anomalus depending on the induction mode |
title | Synthesis of ethyl acetate from glucose by Kluyveromyces marxianus, Cyberlindnera jadinii and Wickerhamomyces anomalus depending on the induction mode |
title_full | Synthesis of ethyl acetate from glucose by Kluyveromyces marxianus, Cyberlindnera jadinii and Wickerhamomyces anomalus depending on the induction mode |
title_fullStr | Synthesis of ethyl acetate from glucose by Kluyveromyces marxianus, Cyberlindnera jadinii and Wickerhamomyces anomalus depending on the induction mode |
title_full_unstemmed | Synthesis of ethyl acetate from glucose by Kluyveromyces marxianus, Cyberlindnera jadinii and Wickerhamomyces anomalus depending on the induction mode |
title_short | Synthesis of ethyl acetate from glucose by Kluyveromyces marxianus, Cyberlindnera jadinii and Wickerhamomyces anomalus depending on the induction mode |
title_sort | synthesis of ethyl acetate from glucose by kluyveromyces marxianus, cyberlindnera jadinii and wickerhamomyces anomalus depending on the induction mode |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7923572/ https://www.ncbi.nlm.nih.gov/pubmed/33716614 http://dx.doi.org/10.1002/elsc.202000048 |
work_keys_str_mv | AT hoffmannandreas synthesisofethylacetatefromglucosebykluyveromycesmarxianuscyberlindnerajadiniiandwickerhamomycesanomalusdependingontheinductionmode AT kupschchristian synthesisofethylacetatefromglucosebykluyveromycesmarxianuscyberlindnerajadiniiandwickerhamomycesanomalusdependingontheinductionmode AT waltherthomas synthesisofethylacetatefromglucosebykluyveromycesmarxianuscyberlindnerajadiniiandwickerhamomycesanomalusdependingontheinductionmode AT loserchristian synthesisofethylacetatefromglucosebykluyveromycesmarxianuscyberlindnerajadiniiandwickerhamomycesanomalusdependingontheinductionmode |