Cargando…

Achieving sustained extrauterine life: Challenges of an artificial placenta in fetal pigs as a model of the preterm human fetus

Artificial placenta (AP) technology aims to maintain fetal circulation, while promoting the physiologic development of organs. Recent reports of experiments performed in sheep indicate the intrauterine environment can be recreated through the cannulation of umbilical vessels, replacement of the plac...

Descripción completa

Detalles Bibliográficos
Autores principales: Charest‐Pekeski, Alex J., Sheta, Ayman, Taniguchi, Luiza, McVey, Mark J., Floh, Alejandro, Sun, Liqun, Aujla, Tanroop, Cho, Steven K. S., Ren, Jiaqi, Crawford‐Lean, Lynn, Foreman, Celeste, Lim, Jessie Mei, Saini, Brahmdeep S., Estrada, Marvin, Lam, Anson, Belik, Jaques, Mroczek, Dariusz, Quinn, Megan, Holman, Stacey L., Darby, Jack R. T., Seed, Mike, Morrison, Janna L., Haller, Christoph
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7923578/
https://www.ncbi.nlm.nih.gov/pubmed/33650787
http://dx.doi.org/10.14814/phy2.14742
_version_ 1783658929397432320
author Charest‐Pekeski, Alex J.
Sheta, Ayman
Taniguchi, Luiza
McVey, Mark J.
Floh, Alejandro
Sun, Liqun
Aujla, Tanroop
Cho, Steven K. S.
Ren, Jiaqi
Crawford‐Lean, Lynn
Foreman, Celeste
Lim, Jessie Mei
Saini, Brahmdeep S.
Estrada, Marvin
Lam, Anson
Belik, Jaques
Mroczek, Dariusz
Quinn, Megan
Holman, Stacey L.
Darby, Jack R. T.
Seed, Mike
Morrison, Janna L.
Haller, Christoph
author_facet Charest‐Pekeski, Alex J.
Sheta, Ayman
Taniguchi, Luiza
McVey, Mark J.
Floh, Alejandro
Sun, Liqun
Aujla, Tanroop
Cho, Steven K. S.
Ren, Jiaqi
Crawford‐Lean, Lynn
Foreman, Celeste
Lim, Jessie Mei
Saini, Brahmdeep S.
Estrada, Marvin
Lam, Anson
Belik, Jaques
Mroczek, Dariusz
Quinn, Megan
Holman, Stacey L.
Darby, Jack R. T.
Seed, Mike
Morrison, Janna L.
Haller, Christoph
author_sort Charest‐Pekeski, Alex J.
collection PubMed
description Artificial placenta (AP) technology aims to maintain fetal circulation, while promoting the physiologic development of organs. Recent reports of experiments performed in sheep indicate the intrauterine environment can be recreated through the cannulation of umbilical vessels, replacement of the placenta with a low‐resistance membrane oxygenator, and incubation of the fetus in fluid. However, it remains to be seen whether animal fetuses similar in size to the extremely preterm human infant that have been proposed as a potential target for this technology can be supported in this way. Preterm Yucatan miniature piglets are similar in size to extremely preterm human infants and share similar umbilical cord anatomy, raising the possibility to serve as a good model to investigate the AP. To characterize fetal cardiovascular physiology, the carotid artery (n = 24) was cannulated in utero and umbilical vein (UV) and umbilical artery were sampled. Fetal UV flow was measured by MRI (n = 16). Piglets were delivered at 98 ± 4 days gestation (term = 115 days), cannulated, and supported on the AP (n = 12) for 684 ± 228 min (range 195–3077 min). UV flow was subphysiologic (p = .002), while heart rate was elevated on the AP compared with in utero controls (p = .0007). We observed an inverse relationship between heart rate and UV flow (r (2 )= .4527; p < .001) with progressive right ventricular enlargement that was associated with reduced contractility and ultimately hydrops and circulatory collapse. We attribute this to excessive afterload imposed by supraphysiologic circuit resistance and augmented sympathetic activity. We conclude that short‐term support of the preterm piglet on the AP is feasible, although we have not been able to attain normal fetal physiology. In the future, we propose to investigate the feasibility of an AP circuit that incorporates a centrifugal pump in our miniature pig model.
format Online
Article
Text
id pubmed-7923578
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-79235782021-03-12 Achieving sustained extrauterine life: Challenges of an artificial placenta in fetal pigs as a model of the preterm human fetus Charest‐Pekeski, Alex J. Sheta, Ayman Taniguchi, Luiza McVey, Mark J. Floh, Alejandro Sun, Liqun Aujla, Tanroop Cho, Steven K. S. Ren, Jiaqi Crawford‐Lean, Lynn Foreman, Celeste Lim, Jessie Mei Saini, Brahmdeep S. Estrada, Marvin Lam, Anson Belik, Jaques Mroczek, Dariusz Quinn, Megan Holman, Stacey L. Darby, Jack R. T. Seed, Mike Morrison, Janna L. Haller, Christoph Physiol Rep Original Articles Artificial placenta (AP) technology aims to maintain fetal circulation, while promoting the physiologic development of organs. Recent reports of experiments performed in sheep indicate the intrauterine environment can be recreated through the cannulation of umbilical vessels, replacement of the placenta with a low‐resistance membrane oxygenator, and incubation of the fetus in fluid. However, it remains to be seen whether animal fetuses similar in size to the extremely preterm human infant that have been proposed as a potential target for this technology can be supported in this way. Preterm Yucatan miniature piglets are similar in size to extremely preterm human infants and share similar umbilical cord anatomy, raising the possibility to serve as a good model to investigate the AP. To characterize fetal cardiovascular physiology, the carotid artery (n = 24) was cannulated in utero and umbilical vein (UV) and umbilical artery were sampled. Fetal UV flow was measured by MRI (n = 16). Piglets were delivered at 98 ± 4 days gestation (term = 115 days), cannulated, and supported on the AP (n = 12) for 684 ± 228 min (range 195–3077 min). UV flow was subphysiologic (p = .002), while heart rate was elevated on the AP compared with in utero controls (p = .0007). We observed an inverse relationship between heart rate and UV flow (r (2 )= .4527; p < .001) with progressive right ventricular enlargement that was associated with reduced contractility and ultimately hydrops and circulatory collapse. We attribute this to excessive afterload imposed by supraphysiologic circuit resistance and augmented sympathetic activity. We conclude that short‐term support of the preterm piglet on the AP is feasible, although we have not been able to attain normal fetal physiology. In the future, we propose to investigate the feasibility of an AP circuit that incorporates a centrifugal pump in our miniature pig model. John Wiley and Sons Inc. 2021-03-02 /pmc/articles/PMC7923578/ /pubmed/33650787 http://dx.doi.org/10.14814/phy2.14742 Text en © 2021 The Authors. Physiological Reports published by Wiley Periodicals LLC on behalf of The Physiological Society and the American Physiological Society This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Articles
Charest‐Pekeski, Alex J.
Sheta, Ayman
Taniguchi, Luiza
McVey, Mark J.
Floh, Alejandro
Sun, Liqun
Aujla, Tanroop
Cho, Steven K. S.
Ren, Jiaqi
Crawford‐Lean, Lynn
Foreman, Celeste
Lim, Jessie Mei
Saini, Brahmdeep S.
Estrada, Marvin
Lam, Anson
Belik, Jaques
Mroczek, Dariusz
Quinn, Megan
Holman, Stacey L.
Darby, Jack R. T.
Seed, Mike
Morrison, Janna L.
Haller, Christoph
Achieving sustained extrauterine life: Challenges of an artificial placenta in fetal pigs as a model of the preterm human fetus
title Achieving sustained extrauterine life: Challenges of an artificial placenta in fetal pigs as a model of the preterm human fetus
title_full Achieving sustained extrauterine life: Challenges of an artificial placenta in fetal pigs as a model of the preterm human fetus
title_fullStr Achieving sustained extrauterine life: Challenges of an artificial placenta in fetal pigs as a model of the preterm human fetus
title_full_unstemmed Achieving sustained extrauterine life: Challenges of an artificial placenta in fetal pigs as a model of the preterm human fetus
title_short Achieving sustained extrauterine life: Challenges of an artificial placenta in fetal pigs as a model of the preterm human fetus
title_sort achieving sustained extrauterine life: challenges of an artificial placenta in fetal pigs as a model of the preterm human fetus
topic Original Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7923578/
https://www.ncbi.nlm.nih.gov/pubmed/33650787
http://dx.doi.org/10.14814/phy2.14742
work_keys_str_mv AT charestpekeskialexj achievingsustainedextrauterinelifechallengesofanartificialplacentainfetalpigsasamodelofthepretermhumanfetus
AT shetaayman achievingsustainedextrauterinelifechallengesofanartificialplacentainfetalpigsasamodelofthepretermhumanfetus
AT taniguchiluiza achievingsustainedextrauterinelifechallengesofanartificialplacentainfetalpigsasamodelofthepretermhumanfetus
AT mcveymarkj achievingsustainedextrauterinelifechallengesofanartificialplacentainfetalpigsasamodelofthepretermhumanfetus
AT flohalejandro achievingsustainedextrauterinelifechallengesofanartificialplacentainfetalpigsasamodelofthepretermhumanfetus
AT sunliqun achievingsustainedextrauterinelifechallengesofanartificialplacentainfetalpigsasamodelofthepretermhumanfetus
AT aujlatanroop achievingsustainedextrauterinelifechallengesofanartificialplacentainfetalpigsasamodelofthepretermhumanfetus
AT chostevenks achievingsustainedextrauterinelifechallengesofanartificialplacentainfetalpigsasamodelofthepretermhumanfetus
AT renjiaqi achievingsustainedextrauterinelifechallengesofanartificialplacentainfetalpigsasamodelofthepretermhumanfetus
AT crawfordleanlynn achievingsustainedextrauterinelifechallengesofanartificialplacentainfetalpigsasamodelofthepretermhumanfetus
AT foremanceleste achievingsustainedextrauterinelifechallengesofanartificialplacentainfetalpigsasamodelofthepretermhumanfetus
AT limjessiemei achievingsustainedextrauterinelifechallengesofanartificialplacentainfetalpigsasamodelofthepretermhumanfetus
AT sainibrahmdeeps achievingsustainedextrauterinelifechallengesofanartificialplacentainfetalpigsasamodelofthepretermhumanfetus
AT estradamarvin achievingsustainedextrauterinelifechallengesofanartificialplacentainfetalpigsasamodelofthepretermhumanfetus
AT lamanson achievingsustainedextrauterinelifechallengesofanartificialplacentainfetalpigsasamodelofthepretermhumanfetus
AT belikjaques achievingsustainedextrauterinelifechallengesofanartificialplacentainfetalpigsasamodelofthepretermhumanfetus
AT mroczekdariusz achievingsustainedextrauterinelifechallengesofanartificialplacentainfetalpigsasamodelofthepretermhumanfetus
AT quinnmegan achievingsustainedextrauterinelifechallengesofanartificialplacentainfetalpigsasamodelofthepretermhumanfetus
AT holmanstaceyl achievingsustainedextrauterinelifechallengesofanartificialplacentainfetalpigsasamodelofthepretermhumanfetus
AT darbyjackrt achievingsustainedextrauterinelifechallengesofanartificialplacentainfetalpigsasamodelofthepretermhumanfetus
AT seedmike achievingsustainedextrauterinelifechallengesofanartificialplacentainfetalpigsasamodelofthepretermhumanfetus
AT morrisonjannal achievingsustainedextrauterinelifechallengesofanartificialplacentainfetalpigsasamodelofthepretermhumanfetus
AT hallerchristoph achievingsustainedextrauterinelifechallengesofanartificialplacentainfetalpigsasamodelofthepretermhumanfetus