Cargando…
A novel approach to thermographic images analysis of equine thoracolumbar region: the effect of effort and rider’s body weight on structural image complexity
BACKGROUND: The horses’ backs are particularly exposed to overload and injuries due to direct contact with the saddle and the influence of e.g. the rider’s body weight. The maximal load for a horse’s back during riding has been suggested not to exceed 20% of the horses’ body weight. The common preva...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7923647/ https://www.ncbi.nlm.nih.gov/pubmed/33653346 http://dx.doi.org/10.1186/s12917-021-02803-2 |
Sumario: | BACKGROUND: The horses’ backs are particularly exposed to overload and injuries due to direct contact with the saddle and the influence of e.g. the rider’s body weight. The maximal load for a horse’s back during riding has been suggested not to exceed 20% of the horses’ body weight. The common prevalence of back problems in riding horses prompted the popularization of thermography of the thoracolumbar region. However, the analysis methods of thermographic images used so far do not distinguish loaded horses with body weight varying between 10 and 20%. RESULTS: The superficial body temperature (SBT) of the thoracolumbar region of the horse’s back was imaged using a non-contact thermographic camera before and after riding under riders with LBW (low body weight, 10%) and HBW (high body weight, 15%). Images were analyzed using six methods: five recent SBT analyses and the novel approach based on Gray Level Co-Occurrence Matrix (GLCM) and Gray Level Run Length Matrix (GLRLM). Temperatures of the horse’s thoracolumbar region were higher (p < 0.0001) after then before the training, and did not differ depending on the rider’s body weight (p > 0.05), regardless of used SBT analysis method. Effort-dependent differences (p < 0.05) were noted for six features of GLCM and GLRLM analysis. The values of selected GLCM and GLRLM features also differed (p < 0.05) between the LBW and HBW groups. CONCLUSION: The GLCM and GLRLM analyses allowed the differentiation of horses subjected to a load of 10 and 15% of their body weights while horseback riding in contrast to the previously used SBT analysis methods. Both types of analyzing methods allow to differentiation thermal images obtained before and after riding. The textural analysis, including selected features of GLCM or GLRLM, seems to be promising tools in considering the quantitative assessment of thermographic images of horses’ thoracolumbar region. |
---|