Cargando…
Misalignment Fault Diagnosis for Wind Turbines Based on Information Fusion
Most conventional wind turbine fault diagnosis techniques only use a single type of signal as fault feature and their performance could be limited to such signal characteristics. In this paper, multiple types of signals including vibration, temperature, and stator current are used simultaneously for...
Autores principales: | Xiao, Yancai, Xue, Jinyu, Zhang, Long, Wang, Yujia, Li, Mengdi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7923760/ https://www.ncbi.nlm.nih.gov/pubmed/33672527 http://dx.doi.org/10.3390/e23020243 |
Ejemplares similares
-
Low-Pass Filtering Empirical Wavelet Transform Machine Learning Based Fault Diagnosis for Combined Fault of Wind Turbines
por: Xiao, Yancai, et al.
Publicado: (2021) -
Misalignment Fault Prediction of Wind Turbines Based on Improved Artificial Fish Swarm Algorithm
por: Hua, Zhe, et al.
Publicado: (2021) -
Fault Diagnosis of Wind Turbine Based on Convolution Neural Network Algorithm
por: Xiao, Wei, et al.
Publicado: (2022) -
Generative Transfer Learning for Intelligent Fault Diagnosis of the Wind Turbine Gearbox
por: Guo, Jianwen, et al.
Publicado: (2020) -
Wind turbine blades fault diagnosis based on vibration dataset analysis
por: Ogaili, Ahmed Ali Farhan, et al.
Publicado: (2023)