Cargando…
Heart rate variability-derived features based on deep neural network for distinguishing different anaesthesia states
BACKGROUND: Estimating the depth of anaesthesia (DoA) is critical in modern anaesthetic practice. Multiple DoA monitors based on electroencephalograms (EEGs) have been widely used for DoA monitoring; however, these monitors may be inaccurate under certain conditions. In this work, we hypothesize tha...
Autores principales: | Zhan, Jian, Wu, Zhuo-xi, Duan, Zhen-xin, Yang, Gui-ying, Du, Zhi-yong, Bao, Xiao-hang, Li, Hong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7923817/ https://www.ncbi.nlm.nih.gov/pubmed/33653263 http://dx.doi.org/10.1186/s12871-021-01285-x |
Ejemplares similares
-
A survey of current practices, attitudes and demands of anaesthesiologists regarding the depth of anaesthesia monitoring in China
por: Zhan, Jian, et al.
Publicado: (2021) -
Fibrosis: a distinguishing feature in the pathology of neural
leprosy
por: Antunes, Sérgio Luiz Gomes, et al.
Publicado: (2019) -
Effect of clonidine on heart rate variability during spinal anaesthesia: randomised clinical trial
por: Batista, Hermes Melo Teixeira, et al.
Publicado: (2023) -
Heart rate variability as a predictor of hypotension after spinal anaesthesia in patients with diabetes mellitus
por: Vinayagam, Stalin, et al.
Publicado: (2019) -
Neural network features distinguish chemosensory stimuli in Caenorhabditis elegans
por: How, Javier J., et al.
Publicado: (2021)