Cargando…
COVID-19 classification using deep feature concatenation technique
Detecting COVID-19 from medical images is a challenging task that has excited scientists around the world. COVID-19 started in China in 2019, and it is still spreading even now. Chest X-ray and Computed Tomography (CT) scan are the most important imaging techniques for diagnosing COVID-19. All resea...
Autores principales: | Saad, Waleed, Shalaby, Wafaa A., Shokair, Mona, El-Samie, Fathi Abd, Dessouky, Moawad, Abdellatef, Essam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7924021/ https://www.ncbi.nlm.nih.gov/pubmed/33680212 http://dx.doi.org/10.1007/s12652-021-02967-7 |
Ejemplares similares
-
COVID-19 Classification Based on Deep Convolution Neural Network Over a Wireless Network
por: Shalaby, Wafaa A., et al.
Publicado: (2021) -
Recursive bit assignment with neural reference adaptive step (RNA) MPPT algorithm for photovoltaic system
por: Hegazy, Eman, et al.
Publicado: (2023) -
Multi-Scale Spatial Concatenations of Local Features in Natural Scenes and Scene Classification
por: Zhu, Xiaoyuan, et al.
Publicado: (2013) -
Gaze Tracking Based on Concatenating Spatial-Temporal Features
por: Hwang, Bor-Jiunn, et al.
Publicado: (2022) -
Efficient framework for brain tumor detection using different deep learning techniques
por: Taher, Fatma, et al.
Publicado: (2022)