Cargando…

Influence of Assembly Gap Size on the Structure and Properties of SUS301L Stainless Steel Laser Welded Lap Joint

The microstructure and properties of laser welding lap joints with different assembly gap sizes are experimentally investigated. The laser weld joint is composed of γ-austenite and δ-ferrite, and the strip ferrite phase is mainly distributed at the austenite grain boundary. The weld metal presents t...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Hongxiao, Wang, Yanxin, Li, Xin, Wang, Wenquan, Yang, Xiwei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7924202/
https://www.ncbi.nlm.nih.gov/pubmed/33672639
http://dx.doi.org/10.3390/ma14040996
Descripción
Sumario:The microstructure and properties of laser welding lap joints with different assembly gap sizes are experimentally investigated. The laser weld joint is composed of γ-austenite and δ-ferrite, and the strip ferrite phase is mainly distributed at the austenite grain boundary. The weld metal presents the austenitic-ferritic (AF) solidification mode. When there is a gap between the two plates, a triangular region composed of similar equiaxed crystals can be found, and the size of the cellular crystals in this region decreases significantly. When the assembly gap size increases from 0.1 mm to 0.4 mm, the weld penetration state of the joint changes from full penetration to semi-penetration, and the surface collapse increases. The excessive size of the gap leads to a decrease in the tensile-shear force and fatigue strength of laser welded joints. In order to ensure that the surface morphology and properties of the welded joint meet the quality standard and requirement, the assembly gap should be less than 0.1mm.