Cargando…
Statistical Approach to Crystal Nucleation in Glass-Forming Liquids
In this work, methods of description of crystal nucleation by using the statistical approach are analyzed. Findings from classical nucleation theory (CNT) for the average time of formation of the first supercritical nucleus are linked with experimental data on nucleation in glass-forming liquids ste...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7924217/ https://www.ncbi.nlm.nih.gov/pubmed/33672620 http://dx.doi.org/10.3390/e23020246 |
_version_ | 1783659044809998336 |
---|---|
author | Deubener, Joachim Schmelzer, Jürn W. P. |
author_facet | Deubener, Joachim Schmelzer, Jürn W. P. |
author_sort | Deubener, Joachim |
collection | PubMed |
description | In this work, methods of description of crystal nucleation by using the statistical approach are analyzed. Findings from classical nucleation theory (CNT) for the average time of formation of the first supercritical nucleus are linked with experimental data on nucleation in glass-forming liquids stemming from repetitive cooling protocols both under isothermal and isochronal conditions. It is shown that statistical methods of lifetime analysis, frequently used in medicine, public health, and social and behavioral sciences, are applicable to crystal nucleation problems in glass-forming liquids and are very useful tools for their exploration. Identifying lifetime with the time to nucleate as a random variable in homogeneous and non-homogeneous Poisson processes, solutions for the nucleation rate under steady-state conditions are presented using the hazard rate and related parameters. This approach supplies us with a more detailed description of nucleation going beyond CNT. In particular, we show that cumulative hazard estimation enables one to derive the plotting positions for visually examining distributional model assumptions. As the crystallization of glass-forming melts can involve more than one type of nucleation processes, linear dependencies of the cumulative hazard function are used to facilitate assignment of lifetimes to each nucleation mechanism. |
format | Online Article Text |
id | pubmed-7924217 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-79242172021-03-03 Statistical Approach to Crystal Nucleation in Glass-Forming Liquids Deubener, Joachim Schmelzer, Jürn W. P. Entropy (Basel) Article In this work, methods of description of crystal nucleation by using the statistical approach are analyzed. Findings from classical nucleation theory (CNT) for the average time of formation of the first supercritical nucleus are linked with experimental data on nucleation in glass-forming liquids stemming from repetitive cooling protocols both under isothermal and isochronal conditions. It is shown that statistical methods of lifetime analysis, frequently used in medicine, public health, and social and behavioral sciences, are applicable to crystal nucleation problems in glass-forming liquids and are very useful tools for their exploration. Identifying lifetime with the time to nucleate as a random variable in homogeneous and non-homogeneous Poisson processes, solutions for the nucleation rate under steady-state conditions are presented using the hazard rate and related parameters. This approach supplies us with a more detailed description of nucleation going beyond CNT. In particular, we show that cumulative hazard estimation enables one to derive the plotting positions for visually examining distributional model assumptions. As the crystallization of glass-forming melts can involve more than one type of nucleation processes, linear dependencies of the cumulative hazard function are used to facilitate assignment of lifetimes to each nucleation mechanism. MDPI 2021-02-20 /pmc/articles/PMC7924217/ /pubmed/33672620 http://dx.doi.org/10.3390/e23020246 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Deubener, Joachim Schmelzer, Jürn W. P. Statistical Approach to Crystal Nucleation in Glass-Forming Liquids |
title | Statistical Approach to Crystal Nucleation in Glass-Forming Liquids |
title_full | Statistical Approach to Crystal Nucleation in Glass-Forming Liquids |
title_fullStr | Statistical Approach to Crystal Nucleation in Glass-Forming Liquids |
title_full_unstemmed | Statistical Approach to Crystal Nucleation in Glass-Forming Liquids |
title_short | Statistical Approach to Crystal Nucleation in Glass-Forming Liquids |
title_sort | statistical approach to crystal nucleation in glass-forming liquids |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7924217/ https://www.ncbi.nlm.nih.gov/pubmed/33672620 http://dx.doi.org/10.3390/e23020246 |
work_keys_str_mv | AT deubenerjoachim statisticalapproachtocrystalnucleationinglassformingliquids AT schmelzerjurnwp statisticalapproachtocrystalnucleationinglassformingliquids |