Cargando…
Quaternary and quinary molecular solids based on structural inequivalence and combinatorial approaches: 2-nitroresorcinol and 4,6-dichlororesorcinol
A synthetic strategy for the formation of stoichiometric quaternary and nonstoichiometric quinary solids is outlined. A series of 2-nitroresorcinol-based quaternary cocrystals were developed from binary precursors in two conceptual stages. In the first stage, ternary solids are synthesized based o...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7924232/ https://www.ncbi.nlm.nih.gov/pubmed/33708395 http://dx.doi.org/10.1107/S2052252520016589 |
_version_ | 1783659047835140096 |
---|---|
author | Rajkumar, Madhu Desiraju, Gautam R. |
author_facet | Rajkumar, Madhu Desiraju, Gautam R. |
author_sort | Rajkumar, Madhu |
collection | PubMed |
description | A synthetic strategy for the formation of stoichiometric quaternary and nonstoichiometric quinary solids is outlined. A series of 2-nitroresorcinol-based quaternary cocrystals were developed from binary precursors in two conceptual stages. In the first stage, ternary solids are synthesized based on the structural inequivalence at two recognition sites in the binary. In the second stage, the ternary is homologated into a stoichiometric quaternary based on the same concept. Any cocrystal without an inequivalence becomes a synthetic dead end. The combinatorial approach involves lower cocrystal systems with different structural environments and preferred synthon selection from a synthon library in solution. Such are the stepping stones for the isolation of higher cocrystals. In addition, a quaternary cocrystal of 4,6-dichlororesorcinol is described wherein an unusual synthon is observed with two resorcinol molecules in a closed loop with two different ditopic bases. The concept of the virtual synthon in binaries with respect to isolated ternaries is validated for the 4,6-dichlororesorcinol system. It is possible that only some binary systems are amenable to homologation into higher cocrystals. The reasons for this could have to do with the existence of preferred synthon modules, in other words, the critical components of the putative higher assembly that cannot be altered. Addition of the third and fourth component might be more flexible, and the choices of these components, possible from a larger pool of chemically related molecules. |
format | Online Article Text |
id | pubmed-7924232 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | International Union of Crystallography |
record_format | MEDLINE/PubMed |
spelling | pubmed-79242322021-03-10 Quaternary and quinary molecular solids based on structural inequivalence and combinatorial approaches: 2-nitroresorcinol and 4,6-dichlororesorcinol Rajkumar, Madhu Desiraju, Gautam R. IUCrJ Research Papers A synthetic strategy for the formation of stoichiometric quaternary and nonstoichiometric quinary solids is outlined. A series of 2-nitroresorcinol-based quaternary cocrystals were developed from binary precursors in two conceptual stages. In the first stage, ternary solids are synthesized based on the structural inequivalence at two recognition sites in the binary. In the second stage, the ternary is homologated into a stoichiometric quaternary based on the same concept. Any cocrystal without an inequivalence becomes a synthetic dead end. The combinatorial approach involves lower cocrystal systems with different structural environments and preferred synthon selection from a synthon library in solution. Such are the stepping stones for the isolation of higher cocrystals. In addition, a quaternary cocrystal of 4,6-dichlororesorcinol is described wherein an unusual synthon is observed with two resorcinol molecules in a closed loop with two different ditopic bases. The concept of the virtual synthon in binaries with respect to isolated ternaries is validated for the 4,6-dichlororesorcinol system. It is possible that only some binary systems are amenable to homologation into higher cocrystals. The reasons for this could have to do with the existence of preferred synthon modules, in other words, the critical components of the putative higher assembly that cannot be altered. Addition of the third and fourth component might be more flexible, and the choices of these components, possible from a larger pool of chemically related molecules. International Union of Crystallography 2021-01-11 /pmc/articles/PMC7924232/ /pubmed/33708395 http://dx.doi.org/10.1107/S2052252520016589 Text en © Rajkumar and Desiraju 2021 http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Research Papers Rajkumar, Madhu Desiraju, Gautam R. Quaternary and quinary molecular solids based on structural inequivalence and combinatorial approaches: 2-nitroresorcinol and 4,6-dichlororesorcinol |
title | Quaternary and quinary molecular solids based on structural inequivalence and combinatorial approaches: 2-nitroresorcinol and 4,6-dichlororesorcinol |
title_full | Quaternary and quinary molecular solids based on structural inequivalence and combinatorial approaches: 2-nitroresorcinol and 4,6-dichlororesorcinol |
title_fullStr | Quaternary and quinary molecular solids based on structural inequivalence and combinatorial approaches: 2-nitroresorcinol and 4,6-dichlororesorcinol |
title_full_unstemmed | Quaternary and quinary molecular solids based on structural inequivalence and combinatorial approaches: 2-nitroresorcinol and 4,6-dichlororesorcinol |
title_short | Quaternary and quinary molecular solids based on structural inequivalence and combinatorial approaches: 2-nitroresorcinol and 4,6-dichlororesorcinol |
title_sort | quaternary and quinary molecular solids based on structural inequivalence and combinatorial approaches: 2-nitroresorcinol and 4,6-dichlororesorcinol |
topic | Research Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7924232/ https://www.ncbi.nlm.nih.gov/pubmed/33708395 http://dx.doi.org/10.1107/S2052252520016589 |
work_keys_str_mv | AT rajkumarmadhu quaternaryandquinarymolecularsolidsbasedonstructuralinequivalenceandcombinatorialapproaches2nitroresorcinoland46dichlororesorcinol AT desirajugautamr quaternaryandquinarymolecularsolidsbasedonstructuralinequivalenceandcombinatorialapproaches2nitroresorcinoland46dichlororesorcinol |