Cargando…
Coherent crystal branches: the impact of tetragonal symmetry on the 2D confined polymer nanostructure
The symmetry of polymer crystals greatly affects the optical, thermal conductivity and mechanical properties of the materials. Past studies have shown that the two-dimensional (2D) confined crystallization of polymer nanorods could produce anisotropic structures. However, few researchers have focus...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7924242/ https://www.ncbi.nlm.nih.gov/pubmed/33708399 http://dx.doi.org/10.1107/S2052252521000774 |
_version_ | 1783659050142007296 |
---|---|
author | Liang, Ziying Zheng, Nan Ni, Bo Lai, Ziwei Niu, Hui Zhang, Shuailin Cao, Yan |
author_facet | Liang, Ziying Zheng, Nan Ni, Bo Lai, Ziwei Niu, Hui Zhang, Shuailin Cao, Yan |
author_sort | Liang, Ziying |
collection | PubMed |
description | The symmetry of polymer crystals greatly affects the optical, thermal conductivity and mechanical properties of the materials. Past studies have shown that the two-dimensional (2D) confined crystallization of polymer nanorods could produce anisotropic structures. However, few researchers have focused on understanding confined nanostructures from the perspective of crystal symmetry. In this research, we demonstrate the molecular chain self-assembly of tetragonal crystals under cylindrical confinement. We specifically selected poly(4-methyl-1-pentene) (P4MP1) with a 4(1) or 7(2) helical conformation (usually crystallizing with a tetragonal lattice) as the model polymer. We found a coherent crystal branching of the tetragonal crystal in the P4MP1 nanorods. The unusual 45°- and 135°-{200} diffractions and the meridional 220 diffraction (from 45°-tilted crystals) have shown a uniform crystal branching between the a (1)-axis crystals and the 45°-tilted crystals in the rod long axis, which originates from a structural defect associated with tetragonal symmetry. Surprisingly, this chain packing defect in the tetragonal cell can be controlled to develop along the rod long axis in 2D confinement. |
format | Online Article Text |
id | pubmed-7924242 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | International Union of Crystallography |
record_format | MEDLINE/PubMed |
spelling | pubmed-79242422021-03-10 Coherent crystal branches: the impact of tetragonal symmetry on the 2D confined polymer nanostructure Liang, Ziying Zheng, Nan Ni, Bo Lai, Ziwei Niu, Hui Zhang, Shuailin Cao, Yan IUCrJ Research Papers The symmetry of polymer crystals greatly affects the optical, thermal conductivity and mechanical properties of the materials. Past studies have shown that the two-dimensional (2D) confined crystallization of polymer nanorods could produce anisotropic structures. However, few researchers have focused on understanding confined nanostructures from the perspective of crystal symmetry. In this research, we demonstrate the molecular chain self-assembly of tetragonal crystals under cylindrical confinement. We specifically selected poly(4-methyl-1-pentene) (P4MP1) with a 4(1) or 7(2) helical conformation (usually crystallizing with a tetragonal lattice) as the model polymer. We found a coherent crystal branching of the tetragonal crystal in the P4MP1 nanorods. The unusual 45°- and 135°-{200} diffractions and the meridional 220 diffraction (from 45°-tilted crystals) have shown a uniform crystal branching between the a (1)-axis crystals and the 45°-tilted crystals in the rod long axis, which originates from a structural defect associated with tetragonal symmetry. Surprisingly, this chain packing defect in the tetragonal cell can be controlled to develop along the rod long axis in 2D confinement. International Union of Crystallography 2021-02-06 /pmc/articles/PMC7924242/ /pubmed/33708399 http://dx.doi.org/10.1107/S2052252521000774 Text en © Ziying Liang et al. 2021 http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Research Papers Liang, Ziying Zheng, Nan Ni, Bo Lai, Ziwei Niu, Hui Zhang, Shuailin Cao, Yan Coherent crystal branches: the impact of tetragonal symmetry on the 2D confined polymer nanostructure |
title | Coherent crystal branches: the impact of tetragonal symmetry on the 2D confined polymer nanostructure |
title_full | Coherent crystal branches: the impact of tetragonal symmetry on the 2D confined polymer nanostructure |
title_fullStr | Coherent crystal branches: the impact of tetragonal symmetry on the 2D confined polymer nanostructure |
title_full_unstemmed | Coherent crystal branches: the impact of tetragonal symmetry on the 2D confined polymer nanostructure |
title_short | Coherent crystal branches: the impact of tetragonal symmetry on the 2D confined polymer nanostructure |
title_sort | coherent crystal branches: the impact of tetragonal symmetry on the 2d confined polymer nanostructure |
topic | Research Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7924242/ https://www.ncbi.nlm.nih.gov/pubmed/33708399 http://dx.doi.org/10.1107/S2052252521000774 |
work_keys_str_mv | AT liangziying coherentcrystalbranchestheimpactoftetragonalsymmetryonthe2dconfinedpolymernanostructure AT zhengnan coherentcrystalbranchestheimpactoftetragonalsymmetryonthe2dconfinedpolymernanostructure AT nibo coherentcrystalbranchestheimpactoftetragonalsymmetryonthe2dconfinedpolymernanostructure AT laiziwei coherentcrystalbranchestheimpactoftetragonalsymmetryonthe2dconfinedpolymernanostructure AT niuhui coherentcrystalbranchestheimpactoftetragonalsymmetryonthe2dconfinedpolymernanostructure AT zhangshuailin coherentcrystalbranchestheimpactoftetragonalsymmetryonthe2dconfinedpolymernanostructure AT caoyan coherentcrystalbranchestheimpactoftetragonalsymmetryonthe2dconfinedpolymernanostructure |