Cargando…
Combining active learning suggestions
We study the problem of combining active learning suggestions to identify informative training examples by empirically comparing methods on benchmark datasets. Many active learning heuristics for classification problems have been proposed to help us pick which instance to annotate next. But what is...
Autores principales: | Tran, Alasdair, Ong, Cheng Soon, Wolf, Christian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7924427/ https://www.ncbi.nlm.nih.gov/pubmed/33816810 http://dx.doi.org/10.7717/peerj-cs.157 |
Ejemplares similares
-
A new model for learning-based forecasting procedure by combining k-means clustering and time series forecasting algorithms
por: Hartomo, Kristoko Dwi, et al.
Publicado: (2021) -
Leveraging deep contrastive learning for semantic interaction
por: Belcaid, Mahdi, et al.
Publicado: (2022) -
SANgo: a storage infrastructure simulator with reinforcement learning support
por: Arzymatov, Kenenbek, et al.
Publicado: (2020) -
Dynamic guided metric representation learning for multi-view clustering
por: Zheng, Tingyi, et al.
Publicado: (2022) -
Network intrusion detection using oversampling technique and machine learning algorithms
por: Ahmed, Hafiza Anisa, et al.
Publicado: (2022)