Cargando…

An algorithm for calculating top-dimensional bounding chains

We describe the Coefficient-Flow algorithm for calculating the bounding chain of an $(n-1)$-boundary on an $n$-manifold-like simplicial complex $S$. We prove its correctness and show that it has a computational time complexity of O(|S((n−1))|) (where S((n−1)) is the set of $(n-1)$-faces of $S$). We...

Descripción completa

Detalles Bibliográficos
Autores principales: Carvalho, J. Frederico, Vejdemo-Johansson, Mikael, Kragic, Danica, Pokorny, Florian T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7924431/
https://www.ncbi.nlm.nih.gov/pubmed/33816807
http://dx.doi.org/10.7717/peerj-cs.153
_version_ 1783659088206364672
author Carvalho, J. Frederico
Vejdemo-Johansson, Mikael
Kragic, Danica
Pokorny, Florian T.
author_facet Carvalho, J. Frederico
Vejdemo-Johansson, Mikael
Kragic, Danica
Pokorny, Florian T.
author_sort Carvalho, J. Frederico
collection PubMed
description We describe the Coefficient-Flow algorithm for calculating the bounding chain of an $(n-1)$-boundary on an $n$-manifold-like simplicial complex $S$. We prove its correctness and show that it has a computational time complexity of O(|S((n−1))|) (where S((n−1)) is the set of $(n-1)$-faces of $S$). We estimate the big- $O$ coefficient which depends on the dimension of $S$ and the implementation. We present an implementation, experimentally evaluate the complexity of our algorithm, and compare its performance with that of solving the underlying linear system.
format Online
Article
Text
id pubmed-7924431
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher PeerJ Inc.
record_format MEDLINE/PubMed
spelling pubmed-79244312021-04-02 An algorithm for calculating top-dimensional bounding chains Carvalho, J. Frederico Vejdemo-Johansson, Mikael Kragic, Danica Pokorny, Florian T. PeerJ Comput Sci Algorithms and Analysis of Algorithms We describe the Coefficient-Flow algorithm for calculating the bounding chain of an $(n-1)$-boundary on an $n$-manifold-like simplicial complex $S$. We prove its correctness and show that it has a computational time complexity of O(|S((n−1))|) (where S((n−1)) is the set of $(n-1)$-faces of $S$). We estimate the big- $O$ coefficient which depends on the dimension of $S$ and the implementation. We present an implementation, experimentally evaluate the complexity of our algorithm, and compare its performance with that of solving the underlying linear system. PeerJ Inc. 2018-05-28 /pmc/articles/PMC7924431/ /pubmed/33816807 http://dx.doi.org/10.7717/peerj-cs.153 Text en ©2018 Carvalho et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited.
spellingShingle Algorithms and Analysis of Algorithms
Carvalho, J. Frederico
Vejdemo-Johansson, Mikael
Kragic, Danica
Pokorny, Florian T.
An algorithm for calculating top-dimensional bounding chains
title An algorithm for calculating top-dimensional bounding chains
title_full An algorithm for calculating top-dimensional bounding chains
title_fullStr An algorithm for calculating top-dimensional bounding chains
title_full_unstemmed An algorithm for calculating top-dimensional bounding chains
title_short An algorithm for calculating top-dimensional bounding chains
title_sort algorithm for calculating top-dimensional bounding chains
topic Algorithms and Analysis of Algorithms
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7924431/
https://www.ncbi.nlm.nih.gov/pubmed/33816807
http://dx.doi.org/10.7717/peerj-cs.153
work_keys_str_mv AT carvalhojfrederico analgorithmforcalculatingtopdimensionalboundingchains
AT vejdemojohanssonmikael analgorithmforcalculatingtopdimensionalboundingchains
AT kragicdanica analgorithmforcalculatingtopdimensionalboundingchains
AT pokornyfloriant analgorithmforcalculatingtopdimensionalboundingchains
AT carvalhojfrederico algorithmforcalculatingtopdimensionalboundingchains
AT vejdemojohanssonmikael algorithmforcalculatingtopdimensionalboundingchains
AT kragicdanica algorithmforcalculatingtopdimensionalboundingchains
AT pokornyfloriant algorithmforcalculatingtopdimensionalboundingchains