Cargando…
An algorithm for calculating top-dimensional bounding chains
We describe the Coefficient-Flow algorithm for calculating the bounding chain of an $(n-1)$-boundary on an $n$-manifold-like simplicial complex $S$. We prove its correctness and show that it has a computational time complexity of O(|S((n−1))|) (where S((n−1)) is the set of $(n-1)$-faces of $S$). We...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7924431/ https://www.ncbi.nlm.nih.gov/pubmed/33816807 http://dx.doi.org/10.7717/peerj-cs.153 |
_version_ | 1783659088206364672 |
---|---|
author | Carvalho, J. Frederico Vejdemo-Johansson, Mikael Kragic, Danica Pokorny, Florian T. |
author_facet | Carvalho, J. Frederico Vejdemo-Johansson, Mikael Kragic, Danica Pokorny, Florian T. |
author_sort | Carvalho, J. Frederico |
collection | PubMed |
description | We describe the Coefficient-Flow algorithm for calculating the bounding chain of an $(n-1)$-boundary on an $n$-manifold-like simplicial complex $S$. We prove its correctness and show that it has a computational time complexity of O(|S((n−1))|) (where S((n−1)) is the set of $(n-1)$-faces of $S$). We estimate the big- $O$ coefficient which depends on the dimension of $S$ and the implementation. We present an implementation, experimentally evaluate the complexity of our algorithm, and compare its performance with that of solving the underlying linear system. |
format | Online Article Text |
id | pubmed-7924431 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | PeerJ Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-79244312021-04-02 An algorithm for calculating top-dimensional bounding chains Carvalho, J. Frederico Vejdemo-Johansson, Mikael Kragic, Danica Pokorny, Florian T. PeerJ Comput Sci Algorithms and Analysis of Algorithms We describe the Coefficient-Flow algorithm for calculating the bounding chain of an $(n-1)$-boundary on an $n$-manifold-like simplicial complex $S$. We prove its correctness and show that it has a computational time complexity of O(|S((n−1))|) (where S((n−1)) is the set of $(n-1)$-faces of $S$). We estimate the big- $O$ coefficient which depends on the dimension of $S$ and the implementation. We present an implementation, experimentally evaluate the complexity of our algorithm, and compare its performance with that of solving the underlying linear system. PeerJ Inc. 2018-05-28 /pmc/articles/PMC7924431/ /pubmed/33816807 http://dx.doi.org/10.7717/peerj-cs.153 Text en ©2018 Carvalho et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. |
spellingShingle | Algorithms and Analysis of Algorithms Carvalho, J. Frederico Vejdemo-Johansson, Mikael Kragic, Danica Pokorny, Florian T. An algorithm for calculating top-dimensional bounding chains |
title | An algorithm for calculating top-dimensional bounding chains |
title_full | An algorithm for calculating top-dimensional bounding chains |
title_fullStr | An algorithm for calculating top-dimensional bounding chains |
title_full_unstemmed | An algorithm for calculating top-dimensional bounding chains |
title_short | An algorithm for calculating top-dimensional bounding chains |
title_sort | algorithm for calculating top-dimensional bounding chains |
topic | Algorithms and Analysis of Algorithms |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7924431/ https://www.ncbi.nlm.nih.gov/pubmed/33816807 http://dx.doi.org/10.7717/peerj-cs.153 |
work_keys_str_mv | AT carvalhojfrederico analgorithmforcalculatingtopdimensionalboundingchains AT vejdemojohanssonmikael analgorithmforcalculatingtopdimensionalboundingchains AT kragicdanica analgorithmforcalculatingtopdimensionalboundingchains AT pokornyfloriant analgorithmforcalculatingtopdimensionalboundingchains AT carvalhojfrederico algorithmforcalculatingtopdimensionalboundingchains AT vejdemojohanssonmikael algorithmforcalculatingtopdimensionalboundingchains AT kragicdanica algorithmforcalculatingtopdimensionalboundingchains AT pokornyfloriant algorithmforcalculatingtopdimensionalboundingchains |