Cargando…

Increasing the degree of parallelism using speculative execution in task-based runtime systems

Task-based programming models have demonstrated their efficiency in the development of scientific applications on modern high-performance platforms. They allow delegation of the management of parallelization to the runtime system (RS), which is in charge of the data coherency, the scheduling, and th...

Descripción completa

Detalles Bibliográficos
Autor principal: Bramas, Bérenger
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7924448/
https://www.ncbi.nlm.nih.gov/pubmed/33816836
http://dx.doi.org/10.7717/peerj-cs.183
Descripción
Sumario:Task-based programming models have demonstrated their efficiency in the development of scientific applications on modern high-performance platforms. They allow delegation of the management of parallelization to the runtime system (RS), which is in charge of the data coherency, the scheduling, and the assignment of the work to the computational units. However, some applications have a limited degree of parallelism such that no matter how efficient the RS implementation, they may not scale on modern multicore CPUs. In this paper, we propose using speculation to unleash the parallelism when it is uncertain if some tasks will modify data, and we formalize a new methodology to enable speculative execution in a graph of tasks. This description is partially implemented in our new C++ RS called SPETABARU, which is capable of executing tasks in advance if some others are not certain to modify the data. We study the behavior of our approach to compute Monte Carlo and replica exchange Monte Carlo simulations.