Cargando…

A new non-monotonic infeasible simplex-type algorithm for Linear Programming

This paper presents a new simplex-type algorithm for Linear Programming with the following two main characteristics: (i) the algorithm computes basic solutions which are neither primal or dual feasible, nor monotonically improving and (ii) the sequence of these basic solutions is connected with a se...

Descripción completa

Detalles Bibliográficos
Autores principales: Triantafyllidis, Charalampos P., Samaras, Nikolaos
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7924451/
https://www.ncbi.nlm.nih.gov/pubmed/33816916
http://dx.doi.org/10.7717/peerj-cs.265
Descripción
Sumario:This paper presents a new simplex-type algorithm for Linear Programming with the following two main characteristics: (i) the algorithm computes basic solutions which are neither primal or dual feasible, nor monotonically improving and (ii) the sequence of these basic solutions is connected with a sequence of monotonically improving interior points to construct a feasible direction at each iteration. We compare the proposed algorithm with the state-of-the-art commercial CPLEX and Gurobi Primal-Simplex optimizers on a collection of 93 well known benchmarks. The results are promising, showing that the new algorithm competes versus the state-of-the-art solvers in the total number of iterations required to converge.