Cargando…
A machine learning framework for the prediction of chromatin folding in Drosophila using epigenetic features
Technological advances have lead to the creation of large epigenetic datasets, including information about DNA binding proteins and DNA spatial structure. Hi-C experiments have revealed that chromosomes are subdivided into sets of self-interacting domains called Topologically Associating Domains (TA...
Autores principales: | Rozenwald, Michal B., Galitsyna, Aleksandra A., Sapunov, Grigory V., Khrameeva, Ekaterina E., Gelfand, Mikhail S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7924456/ https://www.ncbi.nlm.nih.gov/pubmed/33816958 http://dx.doi.org/10.7717/peerj-cs.307 |
Ejemplares similares
-
Cumulative contact frequency of a chromatin region is an intrinsic property linked to its function
por: Samborskaia, Margarita D., et al.
Publicado: (2020) -
Order and stochasticity in the folding of individual Drosophila genomes
por: Ulianov, Sergey V., et al.
Publicado: (2021) -
Predicting RNA secondary structure by a neural network: what features may be learned?
por: Grigorashvili, Elizaveta I., et al.
Publicado: (2022) -
Mimetic Neural Networks: A Unified Framework for Protein Design and Folding
por: Eliasof, Moshe, et al.
Publicado: (2022) -
Nuclear lamina integrity is required for proper spatial organization of chromatin in Drosophila
por: Ulianov, Sergey V., et al.
Publicado: (2019)