Cargando…
Convolutional ensembles for Arabic Handwritten Character and Digit Recognition
A learning algorithm is proposed for the task of Arabic Handwritten Character and Digit recognition. The architecture consists on an ensemble of different Convolutional Neural Networks. The proposed training algorithm uses a combination of adaptive gradient descent on the first epochs and regular st...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7924465/ https://www.ncbi.nlm.nih.gov/pubmed/33816820 http://dx.doi.org/10.7717/peerj-cs.167 |
Sumario: | A learning algorithm is proposed for the task of Arabic Handwritten Character and Digit recognition. The architecture consists on an ensemble of different Convolutional Neural Networks. The proposed training algorithm uses a combination of adaptive gradient descent on the first epochs and regular stochastic gradient descent in the last epochs, to facilitate convergence. Different validation strategies are tested, namely Monte Carlo Cross-Validation and K-fold Cross Validation. Hyper-parameter tuning was done by using the MADbase digits dataset. State of the art validation and testing classification accuracies were achieved, with average values of 99.74% and 99.47% respectively. The same algorithm was then trained and tested with the AHCD character dataset, also yielding state of the art validation and testing classification accuracies: 98.60% and 98.42% respectively. |
---|