Cargando…
Convolutional ensembles for Arabic Handwritten Character and Digit Recognition
A learning algorithm is proposed for the task of Arabic Handwritten Character and Digit recognition. The architecture consists on an ensemble of different Convolutional Neural Networks. The proposed training algorithm uses a combination of adaptive gradient descent on the first epochs and regular st...
Autor principal: | Palatnik de Sousa, Iam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7924465/ https://www.ncbi.nlm.nih.gov/pubmed/33816820 http://dx.doi.org/10.7717/peerj-cs.167 |
Ejemplares similares
-
An intelligent approach for Arabic handwritten letter recognition using convolutional neural network
por: Ullah, Zahid, et al.
Publicado: (2022) -
A storage-efficient ensemble classification using filter sharing on binarized convolutional neural networks
por: Kim, HyunJin, et al.
Publicado: (2022) -
Multilabel convolution neural network for facial expression recognition and ordinal intensity estimation
por: Ekundayo, Olufisayo, et al.
Publicado: (2021) -
Design of adaptive ensemble classifier for online sentiment analysis and opinion mining
por: Kumar, Sanjeev, et al.
Publicado: (2021) -
GPUTreeShap: massively parallel exact calculation of SHAP scores for tree ensembles
por: Mitchell, Rory, et al.
Publicado: (2022)