Cargando…
A comparative study of machine learning and deep learning algorithms to classify cancer types based on microarray gene expression data
Cancer classification is a topic of major interest in medicine since it allows accurate and efficient diagnosis and facilitates a successful outcome in medical treatments. Previous studies have classified human tumors using a large-scale RNA profiling and supervised Machine Learning (ML) algorithms...
Autores principales: | Tabares-Soto, Reinel, Orozco-Arias, Simon, Romero-Cano, Victor, Segovia Bucheli, Vanesa, Rodríguez-Sotelo, José Luis, Jiménez-Varón, Cristian Felipe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7924492/ https://www.ncbi.nlm.nih.gov/pubmed/33816921 http://dx.doi.org/10.7717/peerj-cs.270 |
Ejemplares similares
-
K-mer-based machine learning method to classify LTR-retrotransposons in plant genomes
por: Orozco-Arias, Simon, et al.
Publicado: (2021) -
A systematic review of the application of machine learning in the detection and classification of transposable elements
por: Orozco-Arias, Simon, et al.
Publicado: (2019) -
InpactorDB: A Classified Lineage-Level Plant LTR Retrotransposon Reference Library for Free-Alignment Methods Based on Machine Learning
por: Orozco-Arias, Simon, et al.
Publicado: (2021) -
Worldwide co-occurrence analysis of 17 species of the genus Brachypodium using data mining
por: Orozco-Arias, Simon, et al.
Publicado: (2019) -
Classification of Alzheimer’s disease stages from magnetic resonance images using deep learning
por: Mora-Rubio, Alejandro, et al.
Publicado: (2023)