Cargando…
The k conditional nearest neighbor algorithm for classification and class probability estimation
The k nearest neighbor (kNN) approach is a simple and effective nonparametric algorithm for classification. One of the drawbacks of kNN is that the method can only give coarse estimates of class probabilities, particularly for low values of k. To avoid this drawback, we propose a new nonparametric c...
Autores principales: | Gweon, Hyukjun, Schonlau, Matthias, Steiner, Stefan H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7924495/ https://www.ncbi.nlm.nih.gov/pubmed/33816847 http://dx.doi.org/10.7717/peerj-cs.194 |
Ejemplares similares
-
Nearest labelset using double distances for multi-label classification
por: Gweon, Hyukjun, et al.
Publicado: (2019) -
Optimal 1-NN prototypes for pathological geometries
por: Sucholutsky, Ilia, et al.
Publicado: (2021) -
Classification of movie reviews using term frequency-inverse document frequency and optimized machine learning algorithms
por: Naeem, Muhammad Zaid, et al.
Publicado: (2022) -
A new model for learning-based forecasting procedure by combining k-means clustering and time series forecasting algorithms
por: Hartomo, Kristoko Dwi, et al.
Publicado: (2021) -
Minimizing features while maintaining performance in data classification problems
por: Matharaarachchi, Surani, et al.
Publicado: (2022)