Cargando…
A unified approach for cluster-wise and general noise rejection approaches for k-means clustering
Hard C-means (HCM; k-means) is one of the most widely used partitive clustering techniques. However, HCM is strongly affected by noise objects and cannot represent cluster overlap. To reduce the influence of noise objects, objects distant from cluster centers are rejected in some noise rejection app...
Autor principal: | Ubukata, Seiki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7924505/ https://www.ncbi.nlm.nih.gov/pubmed/33816891 http://dx.doi.org/10.7717/peerj-cs.238 |
Ejemplares similares
-
A new model for learning-based forecasting procedure by combining k-means clustering and time series forecasting algorithms
por: Hartomo, Kristoko Dwi, et al.
Publicado: (2021) -
Dynamic guided metric representation learning for multi-view clustering
por: Zheng, Tingyi, et al.
Publicado: (2022) -
Big data clustering techniques based on Spark: a literature review
por: Saeed, Mozamel M., et al.
Publicado: (2020) -
Selective oversampling approach for strongly imbalanced data
por: Gnip, Peter, et al.
Publicado: (2021) -
Analysis and tuning of hierarchical topic models based on Renyi entropy approach
por: Koltcov, Sergei, et al.
Publicado: (2021)