Cargando…
Online supervised attention-based recurrent depth estimation from monocular video
Autonomous driving highly depends on depth information for safe driving. Recently, major improvements have been taken towards improving both supervised and self-supervised methods for depth reconstruction. However, most of the current approaches focus on single frame depth estimation, where quality...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7924529/ https://www.ncbi.nlm.nih.gov/pubmed/33816967 http://dx.doi.org/10.7717/peerj-cs.317 |
_version_ | 1783659108763697152 |
---|---|
author | Maslov, Dmitrii Makarov, Ilya |
author_facet | Maslov, Dmitrii Makarov, Ilya |
author_sort | Maslov, Dmitrii |
collection | PubMed |
description | Autonomous driving highly depends on depth information for safe driving. Recently, major improvements have been taken towards improving both supervised and self-supervised methods for depth reconstruction. However, most of the current approaches focus on single frame depth estimation, where quality limit is hard to beat due to limitations of supervised learning of deep neural networks in general. One of the way to improve quality of existing methods is to utilize temporal information from frame sequences. In this paper, we study intelligent ways of integrating recurrent block in common supervised depth estimation pipeline. We propose a novel method, which takes advantage of the convolutional gated recurrent unit (convGRU) and convolutional long short-term memory (convLSTM). We compare use of convGRU and convLSTM blocks and determine the best model for real-time depth estimation task. We carefully study training strategy and provide new deep neural networks architectures for the task of depth estimation from monocular video using information from past frames based on attention mechanism. We demonstrate the efficiency of exploiting temporal information by comparing our best recurrent method with existing image-based and video-based solutions for monocular depth reconstruction. |
format | Online Article Text |
id | pubmed-7924529 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | PeerJ Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-79245292021-04-02 Online supervised attention-based recurrent depth estimation from monocular video Maslov, Dmitrii Makarov, Ilya PeerJ Comput Sci Artificial Intelligence Autonomous driving highly depends on depth information for safe driving. Recently, major improvements have been taken towards improving both supervised and self-supervised methods for depth reconstruction. However, most of the current approaches focus on single frame depth estimation, where quality limit is hard to beat due to limitations of supervised learning of deep neural networks in general. One of the way to improve quality of existing methods is to utilize temporal information from frame sequences. In this paper, we study intelligent ways of integrating recurrent block in common supervised depth estimation pipeline. We propose a novel method, which takes advantage of the convolutional gated recurrent unit (convGRU) and convolutional long short-term memory (convLSTM). We compare use of convGRU and convLSTM blocks and determine the best model for real-time depth estimation task. We carefully study training strategy and provide new deep neural networks architectures for the task of depth estimation from monocular video using information from past frames based on attention mechanism. We demonstrate the efficiency of exploiting temporal information by comparing our best recurrent method with existing image-based and video-based solutions for monocular depth reconstruction. PeerJ Inc. 2020-11-23 /pmc/articles/PMC7924529/ /pubmed/33816967 http://dx.doi.org/10.7717/peerj-cs.317 Text en ©2020 Maslov and Makarov https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. |
spellingShingle | Artificial Intelligence Maslov, Dmitrii Makarov, Ilya Online supervised attention-based recurrent depth estimation from monocular video |
title | Online supervised attention-based recurrent depth estimation from monocular video |
title_full | Online supervised attention-based recurrent depth estimation from monocular video |
title_fullStr | Online supervised attention-based recurrent depth estimation from monocular video |
title_full_unstemmed | Online supervised attention-based recurrent depth estimation from monocular video |
title_short | Online supervised attention-based recurrent depth estimation from monocular video |
title_sort | online supervised attention-based recurrent depth estimation from monocular video |
topic | Artificial Intelligence |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7924529/ https://www.ncbi.nlm.nih.gov/pubmed/33816967 http://dx.doi.org/10.7717/peerj-cs.317 |
work_keys_str_mv | AT maslovdmitrii onlinesupervisedattentionbasedrecurrentdepthestimationfrommonocularvideo AT makarovilya onlinesupervisedattentionbasedrecurrentdepthestimationfrommonocularvideo |