Cargando…
Online supervised attention-based recurrent depth estimation from monocular video
Autonomous driving highly depends on depth information for safe driving. Recently, major improvements have been taken towards improving both supervised and self-supervised methods for depth reconstruction. However, most of the current approaches focus on single frame depth estimation, where quality...
Autores principales: | Maslov, Dmitrii, Makarov, Ilya |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7924529/ https://www.ncbi.nlm.nih.gov/pubmed/33816967 http://dx.doi.org/10.7717/peerj-cs.317 |
Ejemplares similares
-
Self-supervised recurrent depth estimation with attention mechanisms
por: Makarov, Ilya, et al.
Publicado: (2022) -
eGAC3D: enhancing depth adaptive convolution and depth estimation for monocular 3D object pose detection
por: Ngo, Duc Tuan, et al.
Publicado: (2022) -
Fusion of text and graph information for machine learning problems on networks
por: Makarov, Ilya, et al.
Publicado: (2021) -
A novel no-sensors 3D model reconstruction from monocular video frames for a dynamic environment
por: Fathy, Ghada M., et al.
Publicado: (2021) -
Survey on graph embeddings and their applications to machine learning problems on graphs
por: Makarov, Ilya, et al.
Publicado: (2021)