Cargando…
A serendipity-biased Deepwalk for collaborators recommendation
Scientific collaboration has become a common behaviour in academia. Various recommendation strategies have been designed to provide relevant collaborators for the target scholars. However, scholars are no longer satisfied with the acquainted collaborator recommendations, which may narrow their horiz...
Autores principales: | Xu, Zhenzhen, Yuan, Yuyuan, Wei, Haoran, Wan, Liangtian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7924530/ https://www.ncbi.nlm.nih.gov/pubmed/33816831 http://dx.doi.org/10.7717/peerj-cs.178 |
Ejemplares similares
-
An intelligent film recommender system based on emotional analysis
por: Xiong, Wenzuixiong, et al.
Publicado: (2023) -
Influence of tweets and diversification on serendipitous research paper recommender systems
por: Nishioka, Chifumi, et al.
Publicado: (2020) -
Provenance-and machine learning-based recommendation of parameter values in scientific workflows
por: Silva Junior, Daniel, et al.
Publicado: (2021) -
An experimental study on the performance of collaborative filtering based on user reviews for large-scale datasets
por: AL-Ghuribi, Sumaia, et al.
Publicado: (2023) -
Data mining-based recommendation system using social networks—an analytical study
por: Ajmal, Sahar, et al.
Publicado: (2023)