Cargando…
A multi-task pipeline with specialized streams for classification and segmentation of infection manifestations in COVID-19 scans
We are concerned with the challenge of coronavirus disease (COVID-19) detection in chest X-ray and Computed Tomography (CT) scans, and the classification and segmentation of related infection manifestations. Even though it is arguably not an established diagnostic tool, using machine learning-based...
Autores principales: | El-bana, Shimaa, Al-Kabbany, Ahmad, Sharkas, Maha |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7924532/ https://www.ncbi.nlm.nih.gov/pubmed/33816954 http://dx.doi.org/10.7717/peerj-cs.303 |
Ejemplares similares
-
A Two-Stage Framework for Automated Malignant Pulmonary Nodule Detection in CT Scans
por: EL-Bana, Shimaa, et al.
Publicado: (2020) -
GASTRO-CADx: a three stages framework for diagnosing gastrointestinal diseases
por: Attallah, Omneya, et al.
Publicado: (2021) -
The classification of EEG-based winking signals: a transfer learning and random forest pipeline
por: Mahendra Kumar, Jothi Letchumy, et al.
Publicado: (2021) -
OC_Finder: Osteoclast Segmentation, Counting, and Classification Using Watershed and Deep Learning
por: Wang, Xiao, et al.
Publicado: (2022) -
The impact of Docker containers on the performance of genomic pipelines
por: Di Tommaso, Paolo, et al.
Publicado: (2015)