Cargando…
Multi-objective simulated annealing for hyper-parameter optimization in convolutional neural networks
In this study, we model a CNN hyper-parameter optimization problem as a bi-criteria optimization problem, where the first objective being the classification accuracy and the second objective being the computational complexity which is measured in terms of the number of floating point operations. For...
Autores principales: | Gülcü, Ayla, Kuş, Zeki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7924536/ https://www.ncbi.nlm.nih.gov/pubmed/33816989 http://dx.doi.org/10.7717/peerj-cs.338 |
Ejemplares similares
-
Multi-level pooling encoder–decoder convolution neural network for MRI reconstruction
por: Karnjanapreechakorn, Sarattha, et al.
Publicado: (2022) -
Aspect extraction on user textual reviews using multi-channel convolutional neural network
por: Da’u, Aminu, et al.
Publicado: (2019) -
Deep convolutional neural networks for regular texture recognition
por: Liu, Ni, et al.
Publicado: (2022) -
Configural relations in humans and deep convolutional neural networks
por: Baker, Nicholas, et al.
Publicado: (2023) -
Detecting sarcasm in multi-domain datasets using convolutional neural networks and long short term memory network model
por: Jamil, Ramish, et al.
Publicado: (2021)