Cargando…
Democratizing AI: non-expert design of prediction tasks
Non-experts have long made important contributions to machine learning (ML) by contributing training data, and recent work has shown that non-experts can also help with feature engineering by suggesting novel predictive features. However, non-experts have only contributed features to prediction task...
Autor principal: | Bagrow, James P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7924542/ https://www.ncbi.nlm.nih.gov/pubmed/33816947 http://dx.doi.org/10.7717/peerj-cs.296 |
Ejemplares similares
-
A user task design notation for improved software design
por: Ozcan, Eda, et al.
Publicado: (2021) -
Matching individual attributes with task types in collaborative citizen science
por: Nakayama, Shinnosuke, et al.
Publicado: (2019) -
Experimental investigation on the effects of website aesthetics on user performance in different virtual tasks
por: Thielsch, Meinald T., et al.
Publicado: (2019) -
Designing spaces to support collaborative creativity in shared virtual environments
por: Men, Liang, et al.
Publicado: (2019) -
Architecture design of a reinforcement environment for learning sign languages
por: Naranjo-Zeledón, Luis, et al.
Publicado: (2021)