Cargando…
Adaptive divergence for rapid adversarial optimization
Adversarial Optimization provides a reliable, practical way to match two implicitly defined distributions, one of which is typically represented by a sample of real data, and the other is represented by a parameterized generator. Matching of the distributions is achieved by minimizing a divergence b...
Autores principales: | Borisyak, Maxim, Gaintseva, Tatiana, Ustyuzhanin, Andrey |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7924553/ https://www.ncbi.nlm.nih.gov/pubmed/33816925 http://dx.doi.org/10.7717/peerj-cs.274 |
Ejemplares similares
-
DeepMoney: counterfeit money detection using generative adversarial networks
por: Ali, Toqeer, et al.
Publicado: (2019) -
Code4ML: a large-scale dataset of annotated Machine Learning code
por: Drozdova, Anastasia, et al.
Publicado: (2023) -
CTCN: a novel credit card fraud detection method based on Conditional Tabular Generative Adversarial Networks and Temporal Convolutional Network
por: Zhao, Xiaoyan, et al.
Publicado: (2023) -
SANgo: a storage infrastructure simulator with reinforcement learning support
por: Arzymatov, Kenenbek, et al.
Publicado: (2020) -
Optimal 1-NN prototypes for pathological geometries
por: Sucholutsky, Ilia, et al.
Publicado: (2021)