Cargando…
Wavelet-Prototypical Network Based on Fusion of Time and Frequency Domain for Fault Diagnosis
Neural networks for fault diagnosis need enough samples for training, but in practical applications, there are often insufficient samples. In order to solve this problem, we propose a wavelet-prototypical network based on fusion of time and frequency domain (WPNF). The time domain and frequency doma...
Autores principales: | Wang, Yu, Chen, Lei, Liu, Yang, Gao, Lipeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7924639/ https://www.ncbi.nlm.nih.gov/pubmed/33672742 http://dx.doi.org/10.3390/s21041483 |
Ejemplares similares
-
Integrated Gradient-Based Continuous Wavelet Transform for Bearing Fault Diagnosis
por: Du, Junfei, et al.
Publicado: (2022) -
Fault Diagnosis of Rolling Bearings Based on WPE by Wavelet Decomposition and ELM
por: Xi, Caiping, et al.
Publicado: (2022) -
Roller Bearing Fault Diagnosis Based on Nonlinear Redundant Lifting Wavelet Packet Analysis
por: Gao, Lixin, et al.
Publicado: (2010) -
Deep Learning with LPC and Wavelet Algorithms for Driving Fault Diagnosis
por: Gong, Cihun-Siyong Alex, et al.
Publicado: (2022) -
Ball Screw Fault Diagnosis Based on Wavelet Convolution Transfer Learning
por: Xie, Yifan, et al.
Publicado: (2022)