Cargando…
Pay attention and you won’t lose it: a deep learning approach to sequence imputation
In most areas of machine learning, it is assumed that data quality is fairly consistent between training and inference. Unfortunately, in real systems, data are plagued by noise, loss, and various other quality reducing factors. While a number of deep learning algorithms solve end-stage problems of...
Autores principales: | Sucholutsky, Ilia, Narayan, Apurva, Schonlau, Matthias, Fischmeister, Sebastian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7924680/ https://www.ncbi.nlm.nih.gov/pubmed/33816863 http://dx.doi.org/10.7717/peerj-cs.210 |
Ejemplares similares
-
CGCNImp: a causal graph convolutional network for multivariate time series imputation
por: Liu, Caizheng, et al.
Publicado: (2022) -
Object-oriented building extraction based on visual attention mechanism
por: Shen, Xiaole, et al.
Publicado: (2023) -
Deep learning model for deep fake face recognition and detection
por: ST, Suganthi, et al.
Publicado: (2022) -
Evaluation of cultivated land quality using attention mechanism-back propagation neural network
por: Liu, Yulin, et al.
Publicado: (2022) -
An enhanced CNN-LSTM remaining useful life prediction model for aircraft engine with attention mechanism
por: Li, Hao, et al.
Publicado: (2022)