Cargando…
Effects of data count and image scaling on Deep Learning training
BACKGROUND: Deep learning using convolutional neural networks (CNN) has achieved significant results in various fields that use images. Deep learning can automatically extract features from data, and CNN extracts image features by convolution processing. We assumed that increasing the image size usi...
Autores principales: | Hirahara, Daisuke, Takaya, Eichi, Takahara, Taro, Ueda, Takuya |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7924688/ https://www.ncbi.nlm.nih.gov/pubmed/33816963 http://dx.doi.org/10.7717/peerj-cs.312 |
Ejemplares similares
-
Deep Ensemble Learning for Retinal Image Classification
por: Ho, Edward, et al.
Publicado: (2022) -
Sensitivity of deep learning applied to spatial image steganalysis
por: Tabares-Soto, Reinel, et al.
Publicado: (2021) -
Deep Learning of Histopathology Images at the Single Cell Level
por: Lee, Kyubum, et al.
Publicado: (2021) -
Deep Density Estimation for Cone Counting and Diagnosis of Genetic Eye Diseases From Adaptive Optics Scanning Light Ophthalmoscope Images
por: Toledo-Cortés, Santiago, et al.
Publicado: (2023) -
DMPNet: densely connected multi-scale pyramid networks for crowd counting
por: Li, Pengfei, et al.
Publicado: (2022)