Cargando…
Deep learning based Sequential model for malware analysis using Windows exe API Calls
Malware development has seen diversity in terms of architecture and features. This advancement in the competencies of malware poses a severe threat and opens new research dimensions in malware detection. This study is focused on metamorphic malware, which is the most advanced member of the malware f...
Autores principales: | Catak, Ferhat Ozgur, Yazı, Ahmet Faruk, Elezaj, Ogerta, Ahmed, Javed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7924690/ https://www.ncbi.nlm.nih.gov/pubmed/33816936 http://dx.doi.org/10.7717/peerj-cs.285 |
Ejemplares similares
-
Data augmentation based malware detection using convolutional neural networks
por: Catak, Ferhat Ozgur, et al.
Publicado: (2021) -
Malware detection framework based on graph variational autoencoder extracted embeddings from API-call graphs
por: Gunduz, Hakan
Publicado: (2022) -
Artificial intelligence-driven malware detection framework for internet of things environment
por: Alsubai, Shtwai, et al.
Publicado: (2023) -
A Kullback-Liebler divergence-based representation algorithm for malware detection
por: Aboaoja, Faitouri A., et al.
Publicado: (2023) -
FG-Droid: Grouping based feature size reduction for Android malware detection
por: Arslan, Recep Sinan
Publicado: (2022)