Cargando…
ADID-UNET—a segmentation model for COVID-19 infection from lung CT scans
Currently, the new coronavirus disease (COVID-19) is one of the biggest health crises threatening the world. Automatic detection from computed tomography (CT) scans is a classic method to detect lung infection, but it faces problems such as high variations in intensity, indistinct edges near lung in...
Autores principales: | Joseph Raj, Alex Noel, Zhu, Haipeng, Khan, Asiya, Zhuang, Zhemin, Yang, Zengbiao, Mahesh, Vijayalakshmi G. V., Karthik, Ganesan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7924694/ https://www.ncbi.nlm.nih.gov/pubmed/33816999 http://dx.doi.org/10.7717/peerj-cs.349 |
Ejemplares similares
-
PDAtt-Unet: Pyramid Dual-Decoder Attention Unet for Covid-19 infection segmentation from CT-scans
por: Bougourzi, Fares, et al.
Publicado: (2023) -
Reconstructing 3D human pose and shape from a single image and sparse IMUs
por: Liao, Xianhua, et al.
Publicado: (2023) -
An RDAU-NET model for lesion segmentation in breast ultrasound images
por: Zhuang, Zhemin, et al.
Publicado: (2019) -
New hybrid segmentation algorithm: UNet-GOA
por: Yousefi, Tohid, et al.
Publicado: (2023) -
Lung and Infection CT-Scan-Based Segmentation with 3D UNet Architecture and Its Modification
por: Asnawi, Mohammad Hamid, et al.
Publicado: (2023)